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Wepresentwhatwe believe is the first example of a “λ-line”phase transition in blackhole thermodynamics.
This is a line of (continuous) second order phase transitionswhich in the case of liquid 4Hemarks the onset of
superfluidity. The phase transition occurs for a class of asymptotically anti–de Sitter hairy black holes in
Lovelock gravitywhere a real scalar field is conformally coupled to gravity.Wediscuss the origin of this phase
transition and outline the circumstances under which it (or generalizations of it) could occur.
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The study of black hole thermodynamics provides
valuable insight into quantum properties of the gravita-
tional field. The thermodynamics of anti–de Sitter (AdS)
black holes has been of great interest since the pioneering
work of Hawking and Page, which demonstrated the
existence of a thermal radiation to large AdS black hole
phase transition [1]. Furthermore, these spacetimes admit a
gauge duality description via a dual thermal field theory.
Recently there has been interest in treating the cosmo-

logical constant as a thermodynamic variable (arising, e.g. as
a ðd − 1Þ-form gauge field [2]) which plays the role of
pressure in the first law [3–5]. Within this context, the black
hole mass takes on the interpretation of enthalpy, and a
number of connections with ordinary thermodynamics
emerge. It was shown that the thermodynamic behavior of
a charged AdS black hole is analogous to the van der Waals
liquid or gas system with the role of the liquid to gas
transition played by a small to large black hole phase
transition [6]. Subsequent work has revealed examples of
triple points [7], (multiple) reentrant phase transitions [8,9],
isolated critical points [10,11], and a host of other behavior
for black holes (see Ref. [12] and references therein for a
review).
Here we present the first example of a line of second

order (continuous) black hole phase transitions that
strongly resemble those that occur in condensed matter
systems, e.g., the onset of superfluidity in liquid helium
[13]. The phase transition occurs in a broad class of
asymptotically AdS hairy black holes in Lovelock gravity.
Lovelock gravity [14] is a geometric higher curvature
theory of gravity and is the natural generalization of
Einstein gravity to higher dimensions, giving rise to second
order field equations for the metric. It provides an excellent
test bed for examining the effects of higher curvature
corrections which appear in, for example, the low energy
effective action of string theory [15]. Recently, it has been

shown [16] that a scalar field can be conformally coupled to
the Lovelock terms and the resulting theory gives rise to
analytic hairy black hole solutions [17] evading no-go
results that had been reported previously [18]. These
solutions have already been shown to possess interesting
thermodynamic properties [19–22] (such as reentrant phase
transitions), and are of inherent interest due to the role
scalar hair plays in holography, e.g., in descriptions of
holographic superconductors and superfluids [23,24].
The model we consider consists of Lovelock gravity, a

Maxwell field, and a real scalar field coupled conformally
to the dimensionally extended Euler densities,

I ¼ 1

16πG
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ddx

ffiffiffiffiffiffi
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with δðkÞ ¼ δα1β1…αkβk
μ1ν1…μkνk the generalized Kronecker tensor, ak

and bk are coupling constants, and kmax ≤ ðd − 1Þ=2. Here
the tensor Sμνγδ describes how the scalar field couples to
gravity,

Sμνγδ ¼ ϕ2Rμν
γδ − 2δ½γ½μδ

δ�
ν�∇ρϕ∇ρϕ

− 4ϕδ½γ½μ∇ν�∇δ�ϕþ 8δ½γ½μ∇ν�ϕ∇δ�ϕ; ð3Þ

and transforms homogeneously under the conformal trans-
formation, gμν →Ω2gμν and ϕ→Ω−1ϕ as Sμνγδ →Ω−4Sμνγδ.
We take a line element of the form

ds2 ¼ −fdt2 þ f−1dr2 þ r2dΣ2
ðσÞd−2; ð4Þ
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where dΣ2
ðσÞd−2 (its volume denoted Σσ

d−2) is the line
element on a surface of constant curvature σ with
σ ¼ þ1, 0, −1 corresponding to spherical, flat, and hyper-
bolic geometries; in the latter cases, the space is compact
via identification [25]. For this ansatz, the field equations
for the metric reduce to

Xkmax
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�
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r2

�
k
¼ 16πGM

ðd − 2ÞΣσ
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H
rd

−
8πG

ðd − 2Þðd − 3Þ
Q2

r2d−4
; ð5Þ

where

α0 ¼
a0

ðd − 1Þðd − 2Þ ; α1 ¼ a1;

αk ¼ ak
Y2k
n¼3

ðd − nÞ for k ≥ 2; ð6Þ

and

H ¼
Xkmax

k¼0

ðd − 3Þ!
ðd − 2ðkþ 1ÞÞ! bkσ

kNd−2k ð7Þ

is the “hair parameter,” For this configuration the scalar
field takes the form

ϕ ¼ N
r
; ð8Þ

and its equations of motion reduce to the following
constraints:

Xkmax
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kbk
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Since these are two equations in a single unknown (N), one
equation enforces a constraint on the allowed coupling
constants bk. Computing the temperature by requiring the
absence of conical singularities in the Euclidean sector and
the entropy using the Iyer-Wald formalism [26], we find
that the thermodynamic quantities for this solution are
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where DðrþÞ ¼
Pkmax

k¼1 kαkðσr−2þ Þk−1. It is straightforward
to show that they satisfy the extended first law and Smarr
formula provided variations of the Lovelock couplings are
considered [27] the remaining expressions will be pre-
sented in [28].
In what follows we consider αk ¼ 0 ∀ k > 3 and

bk ¼ 0 ∀ k > 2. This last condition is for simplicity: the
falloff in the metric function is the same for all bk and the
contribution to the entropy is always just a constant, so only
the first three bk’s are required to see all the physics of the
scalar hair.
Introducing the dimensionless parameters:

rþ ¼ vα1=43 ; T ¼ tα−1=43

d − 2
; H ¼ 4πh
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Q ¼ qffiffiffi
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d−2g: ð11Þ

The dimensionless equation of state [obtained by solving
the expression for the temperature in Eq. (10) for the
pressure] reads
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where the quantity p represents the pressure and g the
dimensionless Gibbs free energy. At equilibrium, the state
of the system is that which globally minimizes the Gibbs
free energy.
Noting that the conditions for a critical point are

∂p
∂v ¼ ∂2p

∂v2 ¼ 0; ð13Þ

we find that for α ¼ ffiffiffiffiffiffiffiffi
5=3

p
, if h and q are set to
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h ¼ 4ð2d − 5Þðd − 2Þ2vd−6c

πdðd − 4Þ ;

q2 ¼ 2ðd − 1Þðd − 2Þv2d−10c
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and σ ¼ −1, Eq. (13) will be satisfied by vc ¼ 151=4 and
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900πd
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for all temperatures tc. In other words, this system exhibits
infinitely many critical points with critical volume
vc ¼ 151=4. In the p − v plane, every isotherm is a critical
isotherm, i.e., has an inflection point at v ¼ 151=4. In the
variables ðt; pÞ there is no first order phase transition but
rather a line of second order phase transitions, characterized
by a diverging specific heat cp ¼ −t∂2g=∂t2 at the critical
values. We show representative thermodynamic behavior in
Fig. 1 for d ¼ 7.
The line of second order phase transitions mimics those

that occur in condensed matter systems where they corre-
spond to, for example, fluid to superfluid transitions [29],
superconductivity [30], and paramagnetism to ferromag-
netism transition [31]. Building on the analogy between
black holes and the van der Waals fluid [6], the natural
interpretation here is that this second order phase transition
between small and large black holes corresponds to a fluid
to superfluid phase transition. The resemblance to the fluid
to superfluid λ-line transition of 4He (Fig. 2) is striking. In
each case, a line of critical points separates the two phases
of “fluid” where specific heat takes on the same qualitative
“λ” structure. The phase diagram for helium is more
complicated, including solid and gaseous states. This is

to be expected since helium is a complicated system, while
these hairy black hole solutions are comparatively simple
being characterized by only four numbers: v, h, q, and α.
However, it is remarkable that with so few parameters the
essence of the λ line can be captured. Most of the
interesting properties of a superfluid are either dynamical
or require a full quantum description to understand (see,
e.g., Refs. [13,33] for an introduction and review). Since we
do not have access to a model of the underlying quantum
degrees of freedom, it is not possible to explore the black
hole analogues of these properties at a deeper level.
It is natural to wonder if there are any pathological

properties of these black holes. We have examined the
Kretschmann scalar near the λ line and have found it to be
finite at all finite temperatures and pressures. We have also
studied the explicit solution to the field equations in detail
and have found it to be completely regular outside the
horizon. Within the horizon and at large enough pressures,
the first derivative of the metric function diverges. Such
behavior is neither fatal nor uncommon for Lovelock black
holes—similar behavior occurs for charged black holes in
Gauss-Bonnet gravity (cf. Fig. 2 of Ref. [9]). The Gibbs
free energy and temperature are continuous and differ-
entiable near the critical point and the entropy is positive.
The specific heat is positive, indicating thermodynamic
stability of these black holes. Furthermore, we have
examined the linearized equations of motion for the theory
about a maximally symmetric background and found that,
for the values of the coupling constants taken here, the
theory is free from ghost and tachyon instabilities [28].
Thus, it seems that there is no underlying pathological
behavior here.
To calculate valid critical exponents, the appropriate

ordering field Θ must be identified. As for liquid helium
[29], pressure is no longer the appropriate ordering field for
this line of second order phase transitions. In this case there
are three options for Θ: q, h, or α. The resultant critical

FIG. 1. Thermodynamic behavior near the λ transition. Left: Plot of the Gibbs free energy versus temperature for three distinct
pressures chosen so that critical temperatures are tc ¼ 3, 5, 7, corresponding to the red, blue, and black curves. The dotted lines highlight
the points where the second derivative of the Gibbs free energy diverges. Center: Plot of the specific heat cp ¼ −tð∂2g=∂t2Þ for the case
tc ¼ 3. Right: p − t parameter space. The black line shows the locus of critical points, i.e., a line of second order phase transitions known
as the “λ” line in the context of superfluidity. These plots are for d ¼ 7.
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exponents are independent of which choice is made, but q
is the most natural choice since its variation does not entail
any coupling constants. Rearranging the expression for
the temperature Eq. (10) for the chosen ordering field Θ,
it can be expanded near a critical point [in terms of
ω ¼ ðv − vcÞ=vc and τ ¼ ðt − tcÞ=tc] to give

Θ
Θc

¼ 1 − Aτ þ Bτω − Cω3 þOðτω2;ω4Þ; ð16Þ

where A, B, and C are nonzero constants whose numeric
value depends on the pressure and choice of ordering field.
It is clear from Eq. (16) that the critical exponents are

α ¼ 0; β ¼ 1

2
; γ ¼ 1; δ ¼ 3; ð17Þ

and, respectively, govern the behavior of the specific heat at
constant volume CV ∝ jτj−α, the order parameter ω ∝ jτjβ,

the susceptibility or compressibility ð∂ω=∂ΘÞjτ ∝ jτj−γ,
and the ordering field Θ ∝ jωjδ near a critical point.
These results coincide with the mean field theory values,
in particular, for those for a superfluid in d > 5 (cf. Table I
of Ref. [29]).
We conclude by examining under what situations these λ

lines can be expected for black holes. Here the key result
was that the conditions for a critical point are satisfied
without fixing the temperature. For an equation of state of
the form

P ¼ a1ðV;φiÞT þ a2ðV;φiÞ ð18Þ
(where V is thermodynamic volume and the φi represent
additional constants in the equation of state), this condition
is satisfied provided a nontrivial solution for the following
equations exists:

∂ai
∂V ¼ 0;

∂2ai
∂V2

¼ 0; i ¼ 1; 2: ð19Þ

With four free parameters (v, α, q, and h), the hairy black
holes permit a nontrivial solution to these four equations.
This result generalizes to all Lovelock theories cubic and
higher: with an appropriate choice of parameters, they
possess λ lines in the presence of conformal hair and
charge. However, the necessary and sufficient conditions
for satisfying Eq. (19) for black holes in general remain to
be found. We have checked that neither the rotating black
hole of 5d minimal gauged supergravity [34] nor those in
higher order Lovelock gravity (without hair) admit a
nontrivial solution. A particularly interesting case would
result if the above equations admitted two (or more)
nontrivial solutions. Such a circumstance could give rise
to two intersecting λ lines, a situation that occurs in certain
ferromagnetic materials [35].
To summarize, we have presented the first example of a

superfluid-like phase transition in black hole thermody-
namics. This occurs for hyperbolic black holes with con-
formal scalar hair in cubic Lovelock gravity for any
dimension d ≥ 7. We have examined the black hole sol-
utions and verified they are free from pathological behavior.
We have presented precise conditions [Eq. (19)] that a black
hole equation of state must satisfy to display similar
behavior. While satisfaction of these conditions is by no
means trivial, we find that all cubic-and-higher Lovelock
theories with conformal hair can satisfy these requirements.
We suspect there exists amuch broader class of gravitational
theories containing black holes that will exhibit λ-line phase
transitions. Determining further examples of this, or similar,
behaviour and its holographic interpretation remain inter-
esting problems for future research.

This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada. E. T. thanks
Nanyang Technological University for financial support
through the CN Yang Scholars Programme.

FIG. 2. Thermodynamic properties of 4He. Top: The P − T
phase diagram for 4He. The λ line corresponds to a line of critical
points where a second order phase transition occurs marking the
onset of superfluidity. To the left of the λ line, the liquid begins to
exhibit remarkable properties. Bottom: The specific heat of liquid
4He. As the λ line is approached, the specific heat spikes taking
the shape of the greek letter “λ.” These plots have been reprinted
with permission from Ref. [32].
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