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In this Letter, we consider the possibility of reconciling metric theories of gravitation with a violation of
the conservation of energy-momentum. Under some circumstances, this can be achieved in the context of
unimodular gravity, and it leads to the emergence of an effective cosmological constant in Einstein’s
equation. We specifically investigate two potential sources of energy nonconservation—nonunitary
modifications of quantum mechanics and phenomenological models motivated by quantum gravity
theories with spacetime discreteness at the Planck scale—and show that such locally negligible phenomena
can nevertheless become relevant at the cosmological scale.
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Ever since the discovery of the acceleration in the
Universe’s expansion [1,2], almost two decades ago, there
has been a puzzlement about the strange value of the
corresponding cosmological constant Λ, the simplest, and
so far most successful, theoretical model that could account
for the observed behavior. The origin of this puzzle is that,
within the usual framework, the only seemingly natural
values that Λ could take are either zero or a value which is
120 orders of magnitude larger than the one indicated by
observations Λobs ≈ 1.1 × 10−52 m−2 [3].
In this Letter, we present a scenariowhere something very

similar to a cosmological constant emerges from certain
sources of violations of energy-momentum conservation
and their influence on the space-time geometry. We will
consider here two different sets of ideas, motivating such
violations, but these could also be introduced at a purely
phenomenological level. On the one hand, such violations
are commonplace in the context of certain nonunitary
modifications of Schrödinger’s equation [4] proposed as a
way to address the measurement problem in quantum
mechanics [5]. On the other hand, they are natural in
quantum gravity approaches where fundamental spacetime
discreteness could lead to small violations of translational
invariance. A concretemodel of phase space diffusion due to
Planckian granularity (proposed in the context of causal sets
in Refs. [6,7]) will be used here as an example.
One of the most serious difficulties faced by such

proposals relates to their consistency (or lack thereof) with
the gravitational interaction. We point out that this tension
can be resolved in the framework of unimodular gravity in
the cosmological setting: This resolution leads to the
appearance of an effective cosmological constant that
registers the cumulative effect of the lack of energy-
momentum conservation. In the cosmological setting, we
estimate the contribution to the effective cosmological

constant arising from violations of energy-momentum
conservation predicted by modified quantum mechanics
models as well as by the proposal based on the causal set
approach to quantum gravity. We show that these contri-
butions can be comparable in size with the value of the
cosmological constant inferred from current observations.
Thus, and on a more general ground, our work proposes

a new paradigm for analyzing the dark energy puzzle in
cosmology, that identifies potential violations of energy-
momentum conservation in the past (that could be postu-
lated on a simply phenomenological ground) as a source of
dark energy today.
In general relativity, local energy-momentum conserva-

tion∇bhTabi ¼ 0 is a consequence of the field equations, at
both the classical and semiclassical levels. This is obvious
from the semiclassical version of Einstein’s equation

Rab −
1

2
Rgab ¼

8πG
c4

hTabi; ð1Þ

where hTabi is the expectation value of the (renormalized)
energy-momentum tensor operator in the corresponding
quantum state of the matter fields—and the fact that the
Bianchi identities make the geometric side divergence free.
(For other views on the issue, we refer the reader to the
arguments claiming that semiclassical general relativity is
simply unviable [8], a dissenting opinion [9], and for an
alternative way of looking at such a theory [10].)
The previous restriction can be circumvented by con-

sidering a simple modification of general relativity, already
evoked by Einstein in 1919 when trying to construct a
geometric account for elementary particles in terms of
radiation fields [11]. He proposed the trace-free equation

Rab −
1

4
Rgab ¼

8πG
c4

�
Tab −

1

4
Tgab

�
; ð2Þ
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which has been rediscovered several times and is now
called unimodular gravity (see [12] and references therein).
Unimodular gravity can be derived from the Einstein-
Hilbert action by restricting to variations preserving the
volume form, i.e., those for which gabδgab ¼ 0.
This breaks the diffeomorphism symmetry down to

volume-preserving diffeomorphism, whose infinitesimal
version is given by divergence-free vector fields ξa, i.e.,

∇aξ
a ¼ 0: ð3Þ

This restriction on general covariance allows for violations
of energy-momentum conservation of a certain form.
To see this, consider an action for matter Sm invariant
under volume-preserving diffeomorphisms and introduce
the stress-energy tensor Tab ≡ −2jgj−1=2δSm=δgab and its
energy-momentum violation current Ja ≡∇bTab. The
variation of the action under an infinitesimal diffeomor-
phism (of compact support) ξa is

δSm ¼ −
Z

Tab∇aξb
ffiffiffiffiffiffi
−g

p
dx4 ¼

Z
Jaξa

ffiffiffiffiffiffi
−g

p
dx4; ð4Þ

where the matter field equations are assumed to hold.
Inserting the general solution of (3) ξa ¼ ϵabcd∇bωcd—
for an arbitrary two-form ω—the requirement that the
action is invariant under volume-preserving diffeomor-
phisms (δSm ¼ 0) implies dJ ¼ 0. Hence, violations of
energy-momentum conservation are allowed in unimodular
gravity as long as they are of such an integrable type.
For simply connected spacetimes, this condition reduces

to

Ja ¼ ∇aQ; ð5Þ
for some scalar field Q. Thus, if the matter action is
invariant only under volume-preserving diffeomorphisms,
then J ≠ 0 will introduce deviations from general relativity.
We will discuss later the naturalness of such symmetry
breaking in quantum field theory.
An important feature of unimodular gravity in the

semiclassical framework is that vacuum fluctuations of
the energy-momentum tensor do not gravitate [3]. This
removes the need to contemplate the enormous discrepancy
between the observed value of the cosmological constant
and the standard estimates from the vacuum energy
[12–14]. It has also been argued that unimodular gravity
may not suffer from the problem of time [15,16]; however,
this view has been criticized and clarified in Ref. [17].
Let us move on and consider the semiclassical version of

Eq. (2), where the energy-momentum tensor and its trace
are now replaced by the corresponding expectation values
in a quantum state of the matter fields. Using Bianchi
identities, one then deduces that

1

4
∇aR ¼ 8πG

c4

�
∇bhTabi −

1

4
∇ahTi

�
; ð6Þ

which, after integration, can be used to recast (2) as

Rab −
1

2
Rgab þ

�
Λ−∞ þ 8πG

c4
Q

�
gab ¼

8πG
c4

hTabi; ð7Þ

where Λ−∞ is a constant of integration and Q is defined by
(5) [18]. As expected, when the stress-energy tensor is
conserved, i.e., Q ¼ 0, Eq. (7) simply reduces to Einstein’s
equation, with a cosmological constant equal to Λ−∞.
We emphasize that both semiclassical general relativity

and its unimodular version are regarded here as an effective
and emergent description of more fundamental degrees of
freedom (just like the Navier-Stokes description of a fluid).
The violation of energy-momentum conservation, in our
scenario, would have to admit a description in terms of the
more fundamental (presumably) quantum gravitational
degrees of freedom.
Specializing to cosmology and considering an homo-

geneous, isotropic, and spatially flat Friedmann-Lemaître-
Robertson-Walker universe, ds2 ¼ −c2dt2 þ a2d~x2, the
modified Friedmann equation reads

H2 ≡
�
_a
a

�
2

¼ 8πG
3c2

ρðtÞ þ ΛeffðtÞc2
3

; ð8Þ

where the effective cosmological “constant”

ΛeffðtÞ≡ Λ−∞ þ 8πG
c4

Z
t
J ð9Þ

registers the possible violations of energy-momentum
conservation in the past history of the Universe. We have
reexpressed Q ¼ R

t J, as it will be more convenient for
explicit calculations in the following paragraphs. As we
shall see later, small violations of energy-momentum
conservation—that might remain inaccessible to current
tests of local physics—can nevertheless have important
cosmological effects at late times, in the form of a nontrivial
contribution to the present value of the cosmological
constant.
The first scenario—leading to a violation of energy-

momentum conservation—that we explore is the one
offered by nonunitary modifications of quantum dynamics.
In order to recover Born’s rule for probabilities of exper-
imental outcomes, these modifications of the quantum
theory involve nonlinearity and stochasticity, which for a
wide class of models can be described by a Markovian
evolution equation for the density matrix ρ̂: the so-called
Kossakowski-Lindblad equation [19,20]

_̂ρ ¼ −i½Ĥ; ρ̂� − 1

2

X
α

λα½K̂α; ½K̂α; ρ̂��; ð10Þ

where Ĥ is the standard Schrödinger Hamiltonian operator,
fK̂αg are Hermitian operators characterizing the modified
dynamics, and fλαg are suitable parameters determining the
strength of the new effects.
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Such an equation has been used to describe a possible
nonunitary evolution induced by the creation and evaporation
of black holes [21,22], in the context of Hawking’s informa-
tion puzzle [23]. It also appears in the description of
modifications of quantum mechanics with a spontaneous
stochastic collapse [4]. It has been arguedbyPenrose [24] that
the two apparently different contexts could actually be related
in a more fundamental description of quantum gravitational
phenomena (for a recent development, see [25]). Finally, the
previous equation would also arise in the description of
decoherence with an underlying discrete spacetime [26–28].
In all these cases, a generic feature of Eq. (10) is that the
average energy hEi≡ Tr½ρ̂ Ĥ� is not constant.
One of the prominent models of this type, for non-

relativistic particles, is the so-called mass-proportional
continuous spontaneous localization (CSL) model
[29–32], obtained when K̂α are smeared mass-density
operators. It exhibits a ceaseless creation of energy propor-
tional to the mass of the object collapsing [33]. Thus, in the
cosmological context, the CSL of baryons leads to an
energy-momentum violation current

J ¼ −ξCSLρbdt; ð11Þ
where ρb is the energy density of the baryonic fluid
and the parameter ξCSL is constrained by current experi-
ments according to 3.3×10−42 s−1< ξCSL<2.8×10−29 s−1

(see Fig. 4 in Ref. [34]). Choosing hadronization
(zh ≈ 7 × 1011) as the initial time, (9) and (11) lead to

ΔΛeff
CSL ≈ −

3Ωb
0H0ξCSLffiffiffiffiffiffi
Ωr

0

p
c2

zh ≈ −
ξCSL

4.3 × 10−31s−1
Λobs; ð12Þ

where Λobs is the observed value of the cosmological
constant and we used standard values for the cosmological
parameters [35]. For simplicity, the contribution to Ωr of
particles like electrons, muons, or pions, which were
relativistic at the hadronization epoch, has been neglected.
This would affect the estimate (12) by a numerical factor of
the order of 1. As the effect is linear in the matter density,
Λeff becomes quickly a constant (Fig. 1).
The second scenario where violations of energy-

momentum conservation have been argued to arise naturally
is the causal set approach to quantum gravity [6,7]. These
effects are shown to be compatible with Lorentz invariance;
they are described for both massive and massless particles
and controlled by a few phenomenological parameters.
More precisely, for free massless particles, the physics is
encoded in a phase space diffusion equation that reads

dμ
dt

¼ −
pi

E
∂iμ − ðk1 þ k2Þ

∂μ
∂Eþ k1E

∂2μ

∂E2
; ð13Þ

where k1 and k2 have been constrained comparing the cosmic
microwave background with Planck’s spectrum [7]. In the
cosmological context, the diffusion in phase space leads to
an energy-momentum violation current of the form

J ¼ −ð3k1 þ k2Þnγdt ¼ −ξCSρ
γ
0

�
a0
a

�
3

dt; ð14Þ

where nγ is the number density of photons and
−10−21 s−1 < ξCS < 2 × 10−21 s−1. Interestingly, ξCS can
be negative (endothermic evolution) and thus contributes
positively to the effective cosmological constant. Being
very conservative, we can estimate that contribution
starting from when photons decoupled from electrons
(zdec ≈ 1100); the result is

ΔΛeff
CS ≈ −

2Ωγ
0H0ξCSffiffiffiffiffiffiffi
Ωm

0

p
c2

z3=2dec ≈ −
ξCS

6 × 10−19 s−1
Λobs: ð15Þ

Both results (12) and (15) are very sensitive to the initial
time at which violations of energy conservation started. In
the case of CSL, a precise description of the quark-gluon
plasma to hadron gas transition is difficult [36]; we simply
assumed it to be instantaneous at TQCD ¼ 2 × 1012 K.
Moreover, from an objective collapse perspective, one also
expects modifications of quantummechanics for relativistic
particles and interacting systems, but, due to the lack of
concrete models, it is not yet possible to determine the
corresponding contribution to the cosmological constant. In
the causal set example, something similar to (14) is likely to
hold also before decoupling and thus may largely enhance
the corresponding contribution to the effective cosmologi-
cal constant. In addition, the diffusion of nonrelativistic
particles [6] leads to the creation of energy of the same form
as (11). For that reason, we did not include a detailed
analysis here.
Finally, a very important feature of energy nonconser-

vation in the context of unimodular gravity is that an
effective cosmological constant accessible to observations
like (12) does not require strong modifications of the local
physics. To see this, let us consider for simplicity a universe
made only of baryons (undergoing spontaneous localiza-
tion) and photons. Let us assume moreover that the kinetic
energy (11) created through CSL is mostly transferred to
photons (because of the equipartition theorem and the large
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FIG. 1. Effective cosmological constant induced by a wave-
function collapse of baryons, using the mass-proportional CSL
model with ξCSL ¼ 4.3 × 10−31 s−1.
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number of photons). The backreaction on the stress-energy
tensor is given by the modified continuity equation for
photons _ργ þ 4Hργ ¼ ξCSLρ

b. A solution of this equation
in the radiation-dominated era can be written explicitly

ργðaÞ ¼ ργh
a4h
a4

�
1þ 1

2

ρbh
ργh

ξCSL
Hh

�
a3

a3h
− 1

��
2=3

; ð16Þ

where the subscript h denotes the cosmological quantities
at hadronization time. The departure from the standard
equation of state at the end of the radiation-dominated era
(zeq ∼ 3000) can be read from the quantity

ργeqa4eq
ργha

4
h

− 1 ≈
Ωb

0

2ðzeqΩm
0 Þ3=2

ξCSL
H0

< 10−17; ð17Þ

which is found to be completely negligible. Physically, the
above result shows that the energy created, or lost, produces
effects that pile up in Λeff , while their backreaction on
ordinary matter decreases together with the expansion of
the Universe.
The computations of the contribution to the effective

cosmological constant performed for two models (continu-
ous spontaneous localization and causal sets) illustrate how,
despite the smallness of the modifications of the dynamics
at the local level, the effect on the cosmological scale can be
of the order of Λobs. Moreover, it is worth noting that,
although the quantitative estimates in this Letter have been
obtained for some specific examples, the results of our
analysis are far more general and remain valid as long as the
violation of energy conservation is of integrable type (5).
This framework could therefore be used to rule out
nonstandard models that would lead to an effective cos-
mological constant that varies to much at late time.
There is, a priori, no reason for the energy-momentum

violations produced by the type of mechanisms evoked
here (or those from other hypothetical fundamental
sources) to satisfy the integrability condition in a general
situation. In cases where that condition is violated, a
semiclassical account of the phenomenon in terms of a
metric variable theory of gravity would simply not be
viable. However, in the cosmological setting considered
here, the cosmological principle—homogeneity and isot-
ropy of the Universe at large scales—constrains the current
J to be of the form JtðtÞdt for which (5) is automatically
satisfied at the relevant scales, making the framework of
unimodular gravity useful despite a possible short scale
break in the integrability requirement. This, together with
the fact that deviations of energy-momentum conservation
are strongly constrained in local experiments, is what gives
phenomenological relevance to our analysis that could also
be applied to other situations whenever the integrability
condition can be argued to be approximately valid. In more
general situations, a metric formulation (seen here as an
effective description) would be precluded, and a more
fundamental description would need to be found.

It is, however, interesting to point out that the breaking of
diffeomorphism invariance down to volume-preserving
diffeomorphisms [so that (5) is satisfied down to the local
scale] is actually generic in the regime of validity of
quantum field theory in curved space-times. Concretely,
the renormalization of the expectation value of the energy-
momentum tensor requires the subtraction of ultraviolet
divergences which leads to a normal-ordered stress tensor
satisfying

∇ahTabiNO ¼ ∇bQ; ð18Þ

where Q is a geometric, state-independent, quantity [37]
(for a simple proof of this fact in 2d, see [38]). The standard
view, motivated by consistency with semiclassical general
relativity, is to enforce energy-momentum conservation
through the redefinition h ~Tabi≡ hTabiNO −Qgab. In the
case of conformally coupled theories, this leads to the
famous trace anomaly, interpreted as a breaking of scale
invariance by quantum effects. We can instead simply
deal with hTabiNO in the context of unimodular gravity;
the physical implications will be the same. Even if the
contributions to the cosmological constant in that case
would be tiny, it constitutes a clear-cut example where the
type of phenomenon considered here stems from standard
quantum effects.
In conclusion, we have shown that a violation of energy-

momentum conservation can be reconciled with the metric
theory of gravity by taking the fundamental theory of
spacetime to be unimodular gravity. This change of
paradigm leads to an effective cosmological constant term
in Friedmann’s equation, that can be seen as a record of the
energy-momentum nonconservation during the history of
the Universe. It decreases or increases in time, whenever
energy is created or lost, yet it becomes quickly a constant
(at least in the models described here) as regular matter
density dilutes with the expansion.
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