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Collective pair conversion νeν̄e ↔ νxν̄x by forward scattering, where x ¼ μ or τ, may be generic for
supernova neutrino transport. Depending on the local angular intensity of the electron lepton number carried by

neutrinos, the conversion rate can be “fast,” i.e., of the order of
ffiffiffi
2

p
GFðnνe − nν̄eÞ ≫ Δm2

atm=2E. We present a
novel approach to understand these phenomena: a dispersion relation for the frequency and wave number
ðΩ;KÞ of disturbances in the mean field of νeνx flavor coherence. Runaway solutions occur in “dispersion
gaps,” i.e., in “forbidden” intervals ofΩ and/orKwhere propagatingplanewaves donot exist.We stress that the
actual solutions also depend on the initial and/or boundary conditions, which need to be further investigated.
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Introduction.—The physics of core-collapse supernova
(SN) explosions and neutron-star (NS) mergers raise
unique questions about flavor evolution in environments
where neutrinos are dense. Their decoupling strongly
depends on flavor because β reactions dominate for νe
and ν̄e. As a result, the νeν̄e flux of the SN accretion phase
exceeds the νxν̄x fluxes [1], an effect that is even more
pronounced in NS mergers [2,3]. Moreover, the SN νe flux
is larger than the ν̄e one (deleptonization) and the other way
around in NS mergers.
The subsequent flavor evolution matters because SN

neutrinos not only carry away energy, but also deposit some
of it in the gain region below the stalled SN shock by
νe þ n → pþ e− and ν̄e þ p → nþ eþ, thus driving the
delayed explosion. At later stages, neutrinos regulate
the nucleosynthesis outcome in the neutrino-driven wind.
The neutrino signal from the next nearby SN will also
depend on the flavor ratio.
In the SN region of interest, the matter density is large

and suppresses conventional flavor conversion of the type
νeðpÞ → νxðpÞ, which is driven by neutrino masses and
mixing. This effect becomes important only at larger radii
where neutrinos undergo an MSW resonance [4].
Stochastic density variations from turbulence might stimu-
late flavor conversions [5], but have been found to be
ineffective during the accretion phase [6].
Neutrino-neutrino interactions can famously change this

picture [1,7–15] because flavor off-diagonal refraction by
νeνx coherence spawns conversion [16–18]. In this way,
neutrinos feed back upon themselves and can develop
collective runaway modes. Neutral-current interactions
preserve flavor, so we are dealing with flavor exchange
of the type νeðpÞ þ νxðkÞ ↔ νxðpÞ þ νeðkÞ and especially
νeðpÞ þ ν̄eðkÞ ↔ νxðpÞ þ ν̄xðkÞ by forward scattering.
Such pairwise swaps preserve net flavor, but still modify
subsequent charged-current interactions.
The impact of refractive νeν̄e ↔ νxν̄x conversion has

never been studied in SN simulations because such effects

seemed to arise only beyond the shock wave [19]. Yet,
Sawyer has long held that such conclusions result from
overly simplified assumptions about neutrino distributions
[20–22] and recently, other authors have followed suit
[23,24]. The key issue is the νe and ν̄e angle distributions to
be sufficiently different, in contrast to the traditional “bulb”
emission model. Another option is a “backward” νe and ν̄e
flux, which is unavoidable in the SN decoupling region and
also at larger distances [25,26]. The growth rate for “fast
multiangle instabilities” is of the order of

Φ0 ¼
ffiffiffi
2

p
GFðnνe − nν̄eÞ ¼ 6.42 m−1 nνe − nν̄e

1031 cm−3 : ð1Þ

Notice that we use natural units with ℏ ¼ c ¼ 1, where
6.42 m−1 ¼ 1.92 × 109 s−1 ¼ 1.27 μeV. This rate is “fast”
in that it far exceeds the vacuum oscillation frequency
Δm2

atm=2E ¼ 0.5 km−1 where we have used Δm2
atm ¼

2.4 × 10−3 eV2 and E ¼ 12.5 MeV. Fast flavor conversion
does not require neutrino masses or mixing, except for
providing seed perturbations. Moreover, energy drops out,
forestalling the characteristic energy-dependent flavor
swaps found in many scenarios of collective flavor con-
version [1,9]. More likely, some sort of flavor equilibration
by chaotic evolution of many nonlinearly coupled modes
will occur [20–22,27–30].
We here propose a new perspective that vastly simplifies

both the conceptual understanding and the practical treat-
ment of these phenomena. The starting point is the mean
field of νeνx coherence, essentially the off-diagonal element
of the usual ϱðt; r;pÞ flavor matrix, which normally evolves
purely kinematically. However, after including νν refrac-
tion, ϱ becomes dynamical and we can think of the neutrino
medium as supporting flavor waves described by a wave
four vector K ¼ ðΩ;KÞ and a corresponding polarization
vector.
A propagating mode is a collective disturbance with a

certain frequency Ω. To fulfill the equation of motion
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(EOM), Ω may be required to be complex for some K,
leading to solutions which grow or shrink exponentially in
time. Conversely, some Ω specified at the boundary may
require complex K and thus, exponential solutions as a
function of distance. Moreover, various recently discovered
symmetry-breaking effects [31–36] simply correspond to
complex K in directions other than the symmetry axis of
the neutrino medium and/or to different polarizations of our
flavor waves. We here focus on fast modes because they are
less familiar, yet may dominate in environments where
previously no conversion was thought to occur.
Mean field of flavor coherence.—We describe the

neutrino mean field by the usual density matrices ϱ. For
two flavors, we write in the weak-interaction basis

ϱ ¼ fνe þ fνx
2

þ fνe − fνx
2

�
s S

S� −s

�
; ð2Þ

where fνe and fνx are the initial occupation numbers.
The complex scalar field Spðt; rÞ represents νeνx flavor
coherence for mode p, whereas the real field spðt; rÞ obeys
s2p þ jSpj2 ¼ 1 and provides the survival probability by
1
2
ð1þ sÞ. We use the “flavor isospin convention,” where ν̄

has negative energy and negative ϱ, so the ν̄ coefficients are
−ðfν̄e þ fν̄xÞ=2 and −ðfν̄e − fν̄xÞ=2.
The usual EOM is ð∂t þ v · ∇rÞϱ ¼ i½ϱ;H�, where we

ignore collisions [37,38] and where the Liouville operator
accounts for free streaming. The Hamiltonian matrix is
H ¼ M2=2Eþ vμΛμ

1
2
σ3 þ

ffiffiffi
2

p
GF

R
dΓ0vμv0μϱ0, where σ3 is

a Pauli matrix. The neutrino mass-square matrixM2 is what
drives oscillations because it is not diagonal in the weak
interaction basis. The second term is the usual matter effect,
where vμΛμ ¼ Λ0 − v · Λ, vμ ¼ ð1; vÞ is the neutrino four
velocity, andΛ0 ¼

ffiffiffi
2

p
GFðne − nēÞ, withΛ the correspond-

ing current. The third term is an integral over the neutrino
phase space, extending to negative energies to include
antineutrinos.
We here study fast modes and thus, dismiss M2. As

neutrinos are produced in flavor states, any ϱ matrix
beginning and staying diagonal is a fixed-point solution.
Our task is to determine when this fixed point is stable or
unstable. To this end, we use jSj ≪ 1 and observe that to
linear order s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jSj2

p
¼ 1. Moreover, the EOM no

longer depends on E, so we only deal with angle modes
described by v. The same Sv applies to ν and ν̄, so we only
need the angle distribution of electron lepton number
(ELN) carried by neutrinos, which we express as

Gv ¼
ffiffiffi
2

p
GF

Z
∞

0

dEE2

2π2
½fνeðE; vÞ − fν̄eðE; vÞ�: ð3Þ

If the νx and ν̄x distributions are not equal, we must include
−½fνxðE; vÞ − fν̄xðE; vÞ�. The ELN potential is Φ0 ¼R
dΓGv, and the current is Φ ¼ R

dΓGvv. The phase-space

integration is over the unit sphere:
R
dΓ ¼ R

dv=4π. We
may use coordinates with z along the radial direction and
angles ðθ;φÞ to express v ¼ ðvx; vy; vzÞ ¼ ðsθcφ; sθsφ; cθÞ,
where cθ ¼ cosðθÞ and so on.
Assuming that in our test volume, the occupation

numbers, as well as the matter density. are homogeneous
and stationary, the linearized EOM is

ið∂t þ v · ∇rÞSv ¼ vμðΛþ ΦÞμSv −
Z

dΓ0vμv0μGv0Sv0 : ð4Þ

Here, vμðΛþ ΦÞμ ¼ Λ0 þ Φ0 − v · ðΛþ ΦÞ is the energy
shift due to matter and neutrinos and vμv0μ ¼ ð1 − v · v0Þ.
For planewave, Svðt; rÞ ¼ QvðΩ;KÞe−iðΩt−K·rÞ, the EOM is

vμkμQv ¼ −
Z

dΓ0vμv0μGv0Qv0 ; ð5Þ

where k ¼ K − ðΛþ ΦÞ, with kμ ¼ ðω;kÞ and
K ¼ ðΩ;KÞ. Notice that our ω does not denote Δm2

atm=2E.
The dispersion relation will be for ðω;kÞ and depends

only on Gv. Matter enters through the constant shift
ðΩ;KÞ → ðω;kÞ, which means going to a rotating frame
in flavor space [18,29,39]. K and k have the same
imaginary part, if any. The shift amounts to a global gauge
transformation SpðrÞ → SpðrÞeiðΛþΦÞr. For the ϱ matrices,
it is a global SU(2) gauge transformation.
Dispersion relation (DR).—Without νν interactions,

Eq. (5) implies vμkμ ¼ 0. This purely kinematical relation
means that a spatial disturbance of mode v is carried by
the Liouville flow, causing a local time variation with
ω ¼ v · k. Including νν interactions, the EOM becomes
dynamical. Physically, the local time variation “observed”
by another neutrino can lead to a parametric resonance and
thus, to runaway solutions.
The right hand side of Eq. (5) has the form vμaμ, with a

“polarization vector” aμ ¼ −
R
dΓvμGvQv, so Qv ¼

vμaμ=vμkμ. Insertion on both sides of Eq. (5) yields
vμaμ ¼ −

R
dΓ0vμv0μGv0aμv0μ=kμv0μ. Using the metric

ημν ¼ diagðþ;−;−;−Þ, this EOM is vμΠμνaν ¼ 0. Here
the “polarization tensor,”

Πμν ¼ ημν þ
Z

dv
4π

Gv
vμvν

ω − v · k
; ð6Þ

contains all physical information, which derives from the
ELN angle distribution Gv. The EOM vμΠμνaν ¼ 0 applies
to any mode vμ and thus, amounts to

Πμνaν ¼ 0: ð7Þ

The latter has nontrivial solutions for det½ΠμνðkÞ� ¼ 0,
providing the DR. Once we have found solutions
kμ ¼ ðω;kÞ, we can identify the corresponding polariza-
tion vector aμ and the eigenfunction Qv ¼ aμvμ=kμvμ.
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To find propagating modes with real k, we first pick a
direction k̂ and write k ¼ k̂nω in terms of the refractive
index n. In Eq. (6), we now pull 1=ω out of the integral and
recognize that det½Πμν� ¼ 0 is a quartic equation for ω as a
function of n; i.e., instead of nðωÞ, we find four branches
ωðnÞ. Considering kðnÞ ¼ k̂nωðnÞ, we thus find para-
metric solutions in the form ½ωðnÞ;kðnÞ�. On the other
hand, there is no obvious elegant way to find complex ω
solutions for real k or the other way around without
searching for roots of det½ΠμνðkÞ� ¼ 0.
Generic example.—We assume axial symmetry of Gv

and pick k in the radial direction (z). InΠμν, all terms linear
in vx;y vanish, so Eq. (7) yields two equations for ða0; azÞ,
providing Qv ¼ ða0 − azcθÞ=ðω − kzcθÞ where we have
used k ¼ ð0; 0; kzÞ. These are the bimodal and multizenith
angle (MZA) polarizations [32], which are axially symmet-
ric. The diagonalΠμν terms from v2x and v2y yield degenerate
solutions for ax;y, withQv¼−ðaxsθcφþaysθsφÞ=ðω−kzcθÞ,
the axial symmetry-breaking multiazimuth angle (MAA)
polarizations.
To be explicit, we study the simplest nontrivial case:

two θ modes representing two zenith ranges, i.e., Gv ¼
G1δðcθ − c1Þ þG2δðcθ − c2Þ. The axially symmetric
polarizations produce a quadratic form in both ω and kz,
implying that the DRs are hyperbolas in the ω–kz plane, as
shown in Fig. 1. The axially breaking polarizations provide
similar results.

The left panels use forward modes (0 < cos θ1;2 < 1) as
in traditional bulb emission. If νe dominates in both
modes (upper left), both ω and kz are real: no fast flavor
conversion occurs. If one mode has a ν̄e excess (G1 < 0),
the DR has a gap, providing complex ω for real kz and
the other way around, as indicated by the red blob.
Disturbances with kz in the gap grow exponentially in
time. A real ω imposed at the boundary causes exponential
spatial growth. These conclusions carry over to more
general GðθÞ where one needs a crossing from positive
to negative ELN intensities to obtain a dispersion gap,
which, in turn, enables fast flavor conversion, similar to
spectral crossings for slow modes [40–42].
One forward and one backward mode with νe excess

(upper right) produce two branches of real ω for all kz, but
an ω gap. All spatial disturbances propagate, but a “for-
bidden” frequency imposed at the boundary causes expo-
nential spatial growth. If instead, one of our two modes has
ν̄e excess (lower right), there is a gap in kz. Wave numbers
in this range imply temporal run away.
The direction of a general k can be chosen such that it

feels forward and backward modes, even if all modes are
forward in the SN frame. If Gv > 0 everywhere (no
crossing), such cases produce a DR analogous to the upper
right panel (an ω gap). The neutrino flow is a very
anisotropic medium, so dispersion strongly depends on
k̂. Moreover, some components of k may be real and only
one of them complex, producing exponential variation in
only one spatial direction for a certain ω gap.
Realistic distribution.—The flavor-dependent neutrino

angle distributions from SN simulations are not readily
available. To gain intuition, we have extracted the ELN
distributions from a Garching simulation of a 15M⊙
progenitor [26,43,44]. Figure 2 shows a typical case not
far from the decoupling region. For larger distances,
the ELN profile is horizontally compressed near the
forward (cos θ ¼ 1) direction, although backward modes
(cos θ < 0) are never empty. One key feature is the forward
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FIG. 1. Dispersion relations (black lines) for two θ modes. The
thick red line is ReðωÞ for real kz or ReðkzÞ for real ω. The width
of the blob is �ImðωÞ or �ImðkzÞ. Left: Only outward modes.
Right: One outward and one backward mode. Top: Both νe
excess. Bottom: Forward mode ν̄e excess.
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FIG. 2. Electron lepton number (ELN) angle distribution Gθ of
a 15M⊙ SN simulation at 280 ms post bounce and a radius 37 km.
We plot an ELN number density, to be converted to a weak
potential by Eq. (1). We show a mildly smoothed approximation
suitable for analytic post processing.
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dip due to ν̄e being more forward peaked than νe. However,
we have not found any place or time in this model where
this dip would go negative.
Figure 3 shows the DR implied by Gθ of Fig. 2 for

a radial-moving mode with k ¼ ð0; 0; kzÞ. Without νν
interactions, the DR is ω ¼ cθkz for any angle mode cθ
(gray-shaded region). Including νν interactions, this region
becomes a “zone of avoidance” for propagating collective
oscillations as Qv ∝ 1=ðω − cθkzÞ would be singular. The
thick blue lines are the dispersion relations for the axially
symmetric polarizations. The two degenerate axially break-
ing ones (thick orange) end at the big dots on the border of
the zone of avoidance. In the frequency gap, kz is complex.
We show its real part by semithick blue and orange lines
ending on the horizontal axis. In analogy to the red blobs in
Fig. 1, the blue and orange shaded regions which kiss the
dispersion curves indicate the imaginary part of kz; i.e., kz
in the frequency gap has a real part (semithick line) plus or
minus an imaginary part (edge of the blob).
Growth in the gap.—Any type of ELN distribution

probably occurs somewhere in NS mergers or 3D SN
models, but in our 1D model, Gv is always positive and has
no crossings. Hence, dispersion is similar to an EM wave in
plasma: For every k there is a real ω, but there is an ω gap
where the EOM requires k to be complex.
In analogy to the stability analyses for slow modes [45],

exponential spatial growth obtains if at an interface (e.g.,
the neutrino sphere), a forbidden frequency is prescribed.
The latter was chosen to be stationary in the frame where
M2 is static, i.e., Ω ¼ ωþ Λ0 þ Φ0 ¼ 0, and the system
was stable (real K) in this region. However, the matter

density and neutrino angle distribution evolve with radius,
so a propagating wave can enter a forbidden frequency
band. Exponentially damping and growing solutions ensue,
the latter ones quickly taking over. Beginning with Ref. [7],
such exponential growth starting at some “onset radius” has
been found in many numerical studies.
Notice the difference to EM waves entering a forbidden

region, e.g., radio waves in the ionized upper atmosphere.
The plasma frequency prevents propagation and they are
reflected—they do not grow exponentially in the iono-
sphere. Flavor waves obey a first-order differential equa-
tion, probably explaining this difference.
Recently, it was argued that one should not pick Ω ¼ 0

a priori because every frequency would have some ampli-
tude at the boundary [29,39]. In this case, the system is
spatially unstable everywhere if it has a frequency gap.
Boundary conditions.—However, it is not obvious that

the picture of the flavor field being driven by an external
frequency at some “neutrino sphere” is an appropriate
description altogether. Ignoring collisions and without a
physical interface, the EOM applies on both sides of an
assumed boundary surface. The length scales for fast flavor
conversion are small, so something like the traditional bulb
model is not justified in any obvious sense. Furthermore, the
inclusionof backwardmodesmay require to specifyboundary
conditions in different spatial regions. In a SN, all inward-
moving neutrinos come from neutral-current scattering of the
outward moving ones; hence, inward and outward flows are
flavor correlated beyond what is prescribed by the EOM.
The DR alone only indicates which solutions are con-

sistent with the EOM, but not which ones will actually
occur. We would be sure that the system was always stable
if the DR did not have any gaps, which, however, seem to
be generic. Except for quantum fluctuations or hypothetical
flavor-violating interactions [46–48], M2 is the only source
of seed perturbations. However, which spectrum of flavor
disturbances is produced, and where, remains to be better
understood.
Summary.—We have derived a general dispersion rela-

tion (DR) for disturbances in the mean field of νeνx
coherence. This approach corroborates that fast runaway
solutions can indeed occur as first shown by Sawyer. We
have found that it is the local νe minus ν̄e, angle distribution
Gv, that drives this effect. Therefore, Gv should be
investigated in a larger class of SN models, notably in
3D simulations exhibiting the LESA effect [49]. The
presence of “crossings” in Gv would signify k gaps in
the DR and concomitant temporal instabilities, which
depend on the initial conditions of the flavor disturbances.
At present, it looks like ω gaps are the most generic

dispersion form, so the spatial boundary conditions and
their time variation are needed to understand the generic
behavior of the flavor field. Eventually, one may not get
around, including the collision term in the EOM, to see
which modes of the flavor field are actually excited.
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FIG. 3. Dispersion relations for k ¼ ð0; 0; kzÞ, with Gθ shown
in Fig. 2. Blue: Axially symmetric polarizations. Orange: Two
degenerate axially breaking polarizations. Dots: End of a branch.
Filled regions: Complex solutions in analogy to the red blobs in
Fig. 1, where the semithick solid line is ReðkzÞ, and the edge of
the blob indicates �ImðkzÞ. Gray region: Zone of avoidance for
real ðω; kzÞ.
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While the DR alone does not prove that fast pairwise
flavor conversion indeed occurs, it may well be a generic
phenomenon for SN neutrinos. The impact of flavor
equilibration in the decoupling region should be phenom-
enologically explored. The relevant length scales are much
smaller than the resolution of SN simulations, so one
anyway needs a schematic implementation. Although the
details remain speculative, nontrivial modifications of
shock reheating may be expected.
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