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Quantum steering is a relatively simple test for proving that the values of quantum-mechanical
measurement outcomes come into being only in the act of measurement. By exploiting quantum
correlations, Alice can influence—steer—Bob’s physical system in a way that is impossible in classical
mechanics, as shown by the violation of steering inequalities. Demonstrating this and similar quantum
effects for systems of increasing size, approaching even the classical limit, is a long-standing challenging
problem. Here, we prove an experimentally feasible unbounded violation of a steering inequality. We
derive its universal form where tolerance for measurement-setting errors is explicitly built in by means of
the Deutsch–Maassen–Uffink entropic uncertainty relation. Then, generalizing the mutual unbiasedness,
we apply the inequality to the multisinglet and multiparticle bipartite Bell state. However, the method is
general and opens the possibility of employing multiparticle bipartite steering for randomness certification
and development of quantum technologies, e.g., random access codes.
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Introduction.—Bell nonlocality is demonstrated when
the correlations between the outcomes of spacelike sepa-
rated measurements violate a Bell inequality. To violate
existing Bell inequalities, two spacelike separated parties,
Alice and Bob, with d-dimensional local systems need to
perform an exponential (in d) number of measurements
[1–4]. According to the monogamy relation [5], Alice and
Bob could violate a Bell inequality using OðdÞ measure-
ments; however, existing inequalities are far from this
regime and, so, are experimentally unfeasible [6].
Quantum steering inequalities have recently been consid-

eredasweaker, andcorrespondinglymore feasible, testsof the
quantumness of correlations compared to Bell inequalities
[7–9]. They can expect to see significant applications [10,11]
and such inequalities for large systems enable tests of
quantum mechanics outside of typical regimes. Quantum
steering inequalities quantify the amount of quantum steering
[12,13] that can be achieved, that is, the discrepancy between
the full quantum-mechanical treatment and the local hidden
state (LHS) model, where one of the observers, e.g., Alice,
performs classical measurements. The assumption of the
objective existenceof local states that specifies theoutcomeof
local measurements bounds the amount Alice can steer Bob’s
state. Violation of a steering inequality by a factor ofOð ffiffiffi

d
p Þ

requires dþ 1 observables in the form of mutually unbiased
bases (MUBs) [14]. This scenario necessitates the comple-
mentarity relation among the bases to be fulfilled exactly,
which is experimentally impossible to attain. Steering is
intimately linked to Bell nonlocality. This relation is rather
complex [15] but, for the Clauser-Horne-Shimony-Holt Bell

inequality, steering is limited by the strength of some fine-
grained uncertainty relations [16].
Here, we provide the first general formulation of a

quantum steering inequality with tolerance to errors in
measurement settings. This is a significant step towards
observing an unbounded violation of a steering inequality
for a multiparticle bipartite Bell-singlet state. The method
provides robustness with respect to the degree of unbiased-
ness of bases: it employs generalized MUBs where
unbiasedness varies from one observable (or its eigenvec-
tor) to another, and reveals a link to the Deutsch-Maassen-
Uffink entropic relations. Our formula fits various physical
systems, but since mesoscopic quantum effects are subtle,
technological requirements for an apparatus are high. Here,
we focus on a quantum-optical implementation based on
polarization entangled squeezed vacuum states generated
by parametric down-conversion, polarization rotations, and
photon-counting detection.
Violation of steering inequalities has been demonstrated

for a single photon [17,18], two-photon singlet [19], and
Werner states [20]. Since quantum steering is interpreted
as a quantum-information task where classical measure-
ments simulate an untrusted device, it was extended to a
multipartite scenario useful for semi-device-independent
certification of entanglement in quantum networks [21].
Our approach employing generalized MUBs will boost the
young field of quantum random access codes by enabling
more near-optimal and robust scenarios [22].
Main result.—Consider the quantum steering scenario

shown in Fig. 1. Alice and Bob have local access to

PRL 118, 020402 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

13 JANUARY 2017

0031-9007=17=118(2)=020402(6) 020402-1 © 2017 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.118.020402
http://dx.doi.org/10.1103/PhysRevLett.118.020402
http://dx.doi.org/10.1103/PhysRevLett.118.020402
http://dx.doi.org/10.1103/PhysRevLett.118.020402


subsystems of a bipartite quantum state ρ. Alice chooses
one of her settings x ∈ NN , Nj ≡ f1;…; jg, measures a
nondegenerate observable Ax with eigenvectors fφa

xg,
and receives a result a ∈ Nd with probability pðajxÞ ¼
Trfðjφa

xihφa
x j ⊗ IÞρg. When Alice obtains the result a, the

conditional state

σax ¼ TrAfðjφa
xihφa

x j ⊗ IÞρg; ð1Þ
is “created at a distance” at Bob’s location. For a maximally
entangled state and ideal measurements in MUBs, fσaxg
(renormalized to have unit trace) is an orthonormal basis
for each value of a. In nonideal circumstances, the fσaxg
will be close to some orthonormal bases fϕa

xg. This can be
quantified by the steering functional

SQ ¼
XN
x¼1

Xd
a¼1

Trfjϕa
xihϕa

x jσaxg: ð2Þ

The maximal quantum value of (2) equals the number of
settings, SQ ¼ N, and reveals the perfect match. Please note
that the quantity (2) is a function of a set of measurements
M ¼ fjφa

xihφa
xjg, F ¼ fjϕa

xihϕa
x jg and the state ρ on which

it is performed, so more formally SQ ¼ SQðM;F; ρÞ.
If the shared state ρ is separable, by measuring its

subsystems, Alice can only generate states (at Bob’s side)
that possess the LHS model [14]. In this case, we denote ρ
by ρLHS. Within this model, Alice’s measurements are
untrusted; i.e., they are treated as a black box which
receives inputs (x’s) and reports outcomes (a’s) with
probability pλðajxÞ, where λ labels the hidden (physical)
state. We denote these classical measurements by MC.
The Bob’s conditional state is an average over the ensemble
of local hidden states σλ [9]

σ̄ax ¼
X
λ∈Λ

qλpλðajxÞσλ; ð3Þ

where Λ is a finite set of indices λ, and non-negative
coefficients qλ fulfill

P
λ∈Λqλ ¼ 1. Then, the steering

functional equals

SLHS ¼
XN
x¼1

Xd
a¼1

Trfjϕa
xihϕa

x jσ̄axg: ð4Þ

Its maximal value depends on the choice of Bob’s bases
fϕa

xg and will be estimated below. Equation (4) can be
considered as a function of classical measurements MC,
quantummeasurements F, and the state ρLHS on which they
are performed, SLHS ¼ SLHSðMC;F; ρLHSÞ. For the given
measurement F, the general form of a steering inequality is
SQðM;F; ρÞ ≤ supMC;ρLHSSLHSðMC;F; ρLHSÞ. The maximal
degree of violation of this inequality by quantum states is

VQ ¼ supM;ρSQ
supMC;ρLHSSLHS

> 1: ð5Þ

An unbounded quantum violation is observed if VQ is an
increasing function of some experimental parameters, e.g., of
the amount of entanglement in ρ or number of settings. An
unbounded violation of (5) has been shown for a sequence of
maximally entangled states with increasing local dimension
d (e.g., larger and larger spin) [14]. However, it requires Bob
to perform complex measurements, namely, in MUBs with a
linearly diverging number of settingsN ¼ dþ 1. For a large
dimension, their existence is only known for special cases,
and precise experimental verification of their defining feature
jhϕa

xjϕb
yij2 ¼ 1=d for x ≠ y is unfeasible.

Rather than trying to cure these problems, our method
shall overcome them. We will relax the MUB condition by
allowing the unbiasedness to vary from one observable or its
eigenvector to another and will seek for the maximal overlap
between the bases. In thisway, our result is naturally linked to
the Deutsch-Maassen-Uffink uncertainty relations [23,24]
saying that the Shannon entropies of measurement outcomes
of two nondegenerate observables obtained in two bases
fϕa

xg and fϕb
yg for a quantum state ρ satisfy

Hðfϕa
xgjρÞ þHðfϕb

ygjρÞ ≥ −2 logCxy; ð6Þ
where the maximal overlap Cxy ¼ maxa;bjhϕa

xjϕb
yij quanti-

fies the complementarity of the bases.
Our main result is the following.
Theorem 1.—Given a quantum steering scenario involv-

ing x ∈ NN settings, a ∈ Nd outcomes, and a set of N
orthonormal eingenbases F ¼ fϕa

xg defining the receiver’s
(Bob’s) measurements, the LHS steering functional is
bounded from above by

sup
MC;ρLHS

SLHS ≤ 1þ
XN−1

i¼1

Ci; ð7Þ

where Ci¼maxxCxðNþx−imodNÞ and Cxy ¼ maxa;bjhϕa
x jϕb

yij
for x, y ∈ NN is defined as in the Deutsch-Maassen-Uffink
uncertainty relations. This implies

VQ ≥
N

1þP
N−1
i¼1 Ci

: ð8Þ

In particular, a weaker bound holds

VQ ≥
N

1þ ðN − 1ÞC ð9Þ

FIG. 1. Quantum steering scenario: Alice and Bob share a
bipartite state ρ, either entangled (green) or separable (red),
and Bob would like to verify which one this is. Alice performs
a measurement using an untrusted device of one of her N
observables Ax, and communicates to Bob the outcome a which
she receives with probability pðajxÞ. Bob applies his measure-
ment σax and checks violation of the steering inequality (8).
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with C ¼ maxiCi ¼ maxx≠yCxy.
The proof is included in the Supplemental Material (SM)

[25], Section 1.
Consequently, any ρ for which there existsM, F such that

SQðM;F; ρÞ > 1þP
N−1
i¼1 Ci violates the steering inequal-

ity. The dependence solely on themaximal overlapC frees us
from the necessity of precisely controlling all MUB con-
ditions one by one, as required in previous approaches [14].
Unbounded violation of the steering inequality is obtained

when the ratioSQðMðdÞ; FðdÞ; ρðdÞÞ=ð1þP
N−1
i¼1 CðdÞ

i Þ,where
d is a local dimension of ρ, goes to infinity with d.
It is unclear whether the bound in the Theorem is tight.

For the scenario where N ¼ dþ 1 measurements in MUBs
are performed, VQ≥ðdþ1Þ=ð1þ ffiffiffi

d
p Þ≈ ffiffiffi

d
p

, as in Ref. [14].
We can obtain the upper bound VQ ≤ N by noting that,
for the measurements M ¼ fφa

xg, F ¼ M�, SQ ¼ N is
achieved by the maximally entangled state and SLHS ≥ 1
for the measurements M on a pure product state.
Determining whether this naive upper bound or our lower
bound is loose is an open problem.
However, the key application of our bound is the

following unbounded violation with respect to the local
dimension that is robust to experimental imperfections.
We take the number of measurements to be a function

increasing sublinearly with the dimension and set Bob’s
measurements to be bases such that C ¼

ffiffiffiffiffiffiffiffiffi
dϵ−1

p
, 0 ≤ ϵ < 1.

Such bases we define as the ϵ-generalized MUBs. Then
VQ ≥

ffiffiffiffiffiffiffiffiffi
d1−ϵ

p
is unbounded using the number of measure-

ments increasing slower than linearly with the dimension.
For ϵ ¼ 0, the ϵ-generalized MUBs reproduce the original
MUBs and VQ the scaling of [14].
Implementation.—Wenow turn our abstract mathematical

result into a form which could be tested in a laboratory.
First, we consider independent multiple copies of a singlet
state jΨi ¼ jψ−i⊗k with a single-pair fidelityF < 1, and the
measurements in ϵ-generalized MUBs. The measurements
are taken for each pair individually but for all pairs at
the same time. The conclusive version of the experiment
requires introducing a nonunit efficiency η < 1 for each
detector at Alice’s side [19]. The local dimension of the state
d ¼ 2k allows the existence of dþ 1 original MUBs with

C ¼
ffiffiffiffiffiffiffi
d−1

p
, see, e.g., [29]. We take the number of settings

growing slower than the dimension, N ¼ d1−σ ¼ 2kð1−σÞ
for 0 ≤ σ < 1 (N is assumed to be integer), and

the overlap C ¼
ffiffiffiffiffiffiffiffiffi
dϵ−1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðϵ−1Þ

p
. This leads to Vη

Q ¼
½2kð1−σÞðηFÞk�=½1þ ð2kð1−σÞ − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðϵ−1Þ

p
� (see SM [25],

Section 2). Exponential unbounded violation of order of

Oðð
ffiffiffiffiffiffiffiffiffi
21−ϵ

p
ηFÞkÞ is observed if ϵ < 2 log2ðηFÞ þ 1 (similar

analysis can be performed for N ¼ ⌊d1−σ⌋ leading to
complex formulas). Remarkably, for any fidelity and effi-
ciency satisfying ηF > 1=

ffiffiffi
2

p
, there exist ϵ such that the

violation grows exponentially with the number of pairs k.

However, ηF < 1 limits the set of ϵMUBs which lead to the
violation [log2ðηFÞ < 0]. Ultimately, for ηF approaching

1=
ffiffiffi
2

p
, only the original MUBs (ϵ ¼ 0) can be used.

It is clear that the best violation of (9) is obtained for the
original MUBs, ϵ ¼ 0. Increasing ϵ results in monotonic
decrease of the violation, but its exponential character is
preserved. Figure 2 depicts dependence of the violation
on the efficiency η for F ¼ 0.98, ϵ ¼ 0.1, and σ ¼ 0.5.
For these parameters, the minimal required efficiency for
observing the violation equals η ¼ 0.75. The figure reveals
an interesting property of quantum steering: exponential
decay of the global fidelity Fk and efficiency ηk, observed
for multipair sources of entangled qubits, is suppressed
by an exponential number of measurements. The latter is
possible for handling a small number of qubits (as in
quantum tomography). In fact, this proposal has recently
been demonstrated for the case of k ¼ 4 copies and N ¼ 2
settings corresponding to two MUB elements [30]. The
main challenge in this type of experiments is extending
the number of settings and creating more MUBs. This
seems to require a significant nonlinearity, a resource which
is rare. Hence, below, we shall consider a system where an
unbounded violation is possible using solely linear optics.
We will now employ a quantum-optical scheme based

on a parametric-down-conversion source generating a
polarization entangled squeezed vacuum [31]. Its quantum
correlations posses the same rotational invariance as the
two-photon polarization singlet and can be seen as two
copies of approximate original EPR correlations. Because
of this property, these states have recently been successfully
used to reveal a Bell nonlocality which does not vanish in
the limit of large populations and numbers of settings [32].
Using the same key feature and the ϵ-generalized MUBs
implemented by merely polarization rotations, we will
show that entangled squeezed vacuum states lead to
unbounded violation of our steering inequality.
An entangled squeezed vacuum can be expressed

as a superposition of 2n-photon polarization singlet states
jψni ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p ða†Hb†V − a†Vb
†
HÞnj0i with a probability

amplitude λn, jΨi ¼ P∞
n¼0 λnjψni, where a† (b†) is crea-

tion operator for a spatial mode a (b) and H (V) denotes
horizontal (vertical) polarization [33,34], (see SM [25],
Section 3A). Perfect correlations present in each multi-
particle singlet are manifested by equal photon numbers in
orthogonal polarizations in the spatial modes

FIG. 2. Quantum violation Vη
Q of steering inequality (9) for the

ϵ-generalized MUBs with ϵ ¼ 0.1, singlet state fidelity F ¼ 0.98,
and σ ¼ 0.5 as a function of detection efficiency η.
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jψni ¼
1ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
Xn
m¼0

ð−1ÞmjmH; ðn−mÞViajðn−mÞH;mVib:

ð10Þ
They are preserved with respect to the global rotations of
polarization. Each spatial mode in jψni contains a fixed
number of particles equal to n. Projections on Fock states
constitute a natural framework for Bob’s measurements.
They reveal the correlations but, also, distinguish jψni from
jψn0 i, which leads to post-selective creation of jψni from
the squeezed vacuum state jΨi. Thus, in our considerations,
we will now focus on a particular jψni.
To show unbounded violation (9) for (10) we will adopt a

strategy similar to the one used in [32]: we will examine
the correlations after applying incremental rotations on the
spatial modes (the setup is shown in the SM [25],
Section 3B), further denoted by θx. Each mode represents
a d ¼ ðnþ 1Þ dimensional Hilbert space spanned by one of
the bases enumerated by x ∈ NN, generated by an appro-
priate polarization rotation

jϕmðθxÞi ≔ jðn −mÞHþθx
; mVþθxi: ð11Þ

They correspond to Bob’s fϕm
x g bases discussed in the

Theorem and represent the ϵ-generalizedMUBs (see Fig. S1
in the Supplemental Material [25]). Alice’s measurements
are given by jϕn−mðθxÞi. We then have the following.
Proposition.—Given a set of N Bob’s measurement

bases fjϕm
x ig≔fjϕmðθxÞig with m¼f0g∪Nn and x ∈ NN ,

defined by some set of angles 0 ≤ θx < π=2, C ¼
maxx;y;a;bjhϕa

x jϕb
yij equals the maximal overlap between

fjϕmð0Þig and fjϕmðθÞig with θ ¼ minx;yjθx − θyj
CðnÞðθÞ ¼ max

m;l
jhϕlð0ÞjϕmðθÞij

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

n
qθ;n

�s
ðcos θÞnðtan θÞqθ;n ; ð12Þ

where qθ;n ≔ ⌊n sin2 θ − cos2 θ⌋þ 1 and ⌊…⌋ denotes the
floor function. CðnÞðθÞ goes to zero as fast as
1=

ffiffiffi
4

p
n ðϵ ¼ 1=2Þ.

Including experimental imperfections in their simplest
form, we assume efficiency η for each of the two detectors
at Alice’s side. For the states (10), this modifies the
quantum value of the steering functional to ηnSQ and
condition (9) to Vη

Q ≥ ½ηnNðnÞ�=½1þ ðNðnÞ − 1ÞCðnÞðθÞ�.
Figure 3 depicts the violation VQ (Vη

Q for η ¼ 0) as a
function of the local number of photons n, for the optimal
angle θ ¼ π=2N and number of settings Nopt minimizing

CðnÞðθÞ. The dependence NðnÞ
opt is rather complex (see SM

[25], Section 3C) and is displayed in the upper inset of
Fig. 3. The gray area indicates the values of VQ achieved

for N < NðnÞ
opt. Figure 4 presents Vη

Q as a function of n and
detection efficiency η. As expected, the violation gets

stronger for the increasing population of the system (larger
n-s) but, also, for higher efficiencies. We notice a discrep-
ancy between the value of critical efficiency for n ¼ 1
(d ¼ 2, the singlet case) shown in this figure η ¼ 0.86 and
the one reported in literature η ¼ 0.62 [19]. It probably
reveals that our estimation of the classical bound is not
tight.
Discussion.—We have derived the first fault-tolerant

steering inequality and provided an experimentally feasible
method of obtaining a quantum violation for large quantum
systems. The fault-tolerance is obtained using the Deutsch-
Maassen-Uffink uncertainty relations [4]. The proof of
concept involves the ϵ-generalized MUBs and can be
demonstrated for several two-photon singlets, leading to
a violation of order ofOð ffiffiffi

n
p Þ. The second implementation,

remarkably, deploys linear optics to show that slowly
increasing the number of settings with the local dimension
of a maximally entangled state leads to an unlimited
discrepancy of order of Oð ffiffiffi

n4
p Þ between the classical

and quantum description of the experiment from Fig. 1.
It involves entangled squeezed vacuum, polarization rota-
tions (ϵ ¼ 1=2-generalized MUBs) and photon-number-
resolving detection. Our analysis includes losses.
Squeezed vacuum states produced in parametric down-

conversion, with a mean photon-number of order of ten, are
available in laboratories [31,34,35]. Each jψni is created
by post-selection: measurements at Alice’s (or Bob’s) side
reveal photon numbers in all modes. Realizations could
utilize techniques presented in [36,37] or integrated optics
equipped with superconducting transition-edge sensors
possessing near-perfect efficiencies and well-resolved

FIG. 3. Quantum violation VQ of steering inequality (9) for
multiparticle Bell-singlet states jψni (10) and rotation angle
θ ¼ π=2N. The upper inset shows the optimal number of settings
Nopt for a given n used in this computation. Gray area indicates a
range of values of VQ for N < Nopt.

FIG. 4. Quantum violation Vη
Q of steering inequality (9)

computed for multiparticle Bell-singlet states jψni (10), detection
efficiency η, and the best N found for given n (see Fig. 3). White
area indicates no violation.
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photon-number peaks [38,39]. Angular momentum of light
provides a good alternative [40–42].
The discussed unbounded violations emphasize disparity

between steering andBell-nonlocality correlations.Violation
of Bell inequalities with a small number of settings vanishes
for singlet states built from macroscopic qubits [43,44] and
multiparticle Bell-singlet states [32]. Clarifying the possibil-
ity of loophole-free steering and the role of the fair sampling
assumption similar to [45] necessitates further research.
Our approach may be exploited in several quantum-

information tasks of great technological interest. It addresses
the idea of partial characterization of devices developed
in terms of semi-device-independent scenarios [46].
Multiparticle steering certifies randomness, and it may foster
optimal strategies in quantum random access codes.
Our findings pose intriguing open questions. How would

the number of settings scale in the best steering monogamy
relations [47]? Furthermore, could an asymmetric steering
reveal quantumness more adequately than the original one
(cf. [48])? An affirmative answer may result in applications
for information processing.Within the quantum-information
resources theory, can a rigidity theorem [48] be established
for multiparticle bipartite steering? It would also be interest-
ing to examine our resultwithin general probabilistic theories
of the receiver’s system (cf. [49]).
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