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The amplitude of fluctuation-induced patterns might be expected to be proportional to the strength
of the driving noise, suggesting that such patterns would be difficult to observe in nature. Here, we show
that a large class of spatially extended dynamical systems driven by intrinsic noise can exhibit giant
amplification, yielding patterns whose amplitude is comparable to that of deterministic Turing instabilities.
The giant amplification results from the interplay between noise and nonorthogonal eigenvectors of the
linear stability matrix, yielding transients that grow with time, and which, when driven by the ever-present
intrinsic noise, lead to persistent large amplitude patterns. This mechanism shows that fluctuation-induced
Turing patterns are observable, and are not strongly limited by the amplitude of demographic stochasticity
nor by the value of the diffusion coefficients.
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Since the seminal paper of Turing [1], it has been
recognized that pattern forming dynamical instabilities
could potentially underlie various examples of biological
pattern formation and development [2,3]. The Turing
mechanism has two major assumptions: first, that two
chemical species behave as an activator-inhibitor system
(but see a recent extension [4]), and second, that the spatial
diffusion constant of the inhibitor is greater than that of the
activator, typically by 2 orders of magnitude or more [5,6].
However, this second condition is not generally present in
experimental observations [7,8]. The widely held conclu-
sion is that biological patterns reflect gene expression
and the interplay of developmental processes, so that the
Turing mechanism itself is not generally operative [9].
This conclusion relies upon a third assumption of Turing

patterns: that they are deterministic. However, many bio-
logical systems exhibit strong fluctuations due to demo-
graphic stochasticity (or small number fluctuations), arising
from, e.g., finite population size (ecology) or copy number
(gene expression) [10,11], and these fluctuations could
potentially couple to the underlying pattern-forming insta-
bilities. Detailed analysis shows that the length scale of
fluctuation-induced patterns is set by the same condition
as in the deterministic Turing analysis, but remarkably the
pattern exists over a wide range of parameter values, even
where the diffusion constants of activator and inhibitor are of
similar magnitudes [5,12–17]. These fluctuation-induced or
stochastic patterns arise physically because, even though the
uniform unpatterned state is linearly stable, the demographic
fluctuations are constantly pushing the system slightly away
from its stable fixed point; if the resulting small amplitude
dynamics is dominated by an eigenvalue with a nonzero
wavelength, then a spatial pattern can arise.

Unfortunately, this mechanism suggests that the ampli-
tude of fluctuation-induced patterns would be set by Ω−1=2,
where Ω indicates the total number of molecules within a
correlation volume of the system, i.e., the spatial patch
within which the system can be considered to bewell mixed
[12,13]. Thus, in situations where Ω ≫ 1, fluctuation-
induced patterns would have a very small amplitude
compared to deterministic Turing patterns, and so might
not be observable nor relevant to biological and ecological
pattern formation [18].
The purpose of this Letter is to show that fluctuation-

induced Turing patterns can in fact be readily observed,
even when the noise is very small and the ratio of diffusion
constants is close to one. The new ingredient to the theory
uncovered here is the presence of giant amplification, due
to an interplay between demographic stochasticity and
nonorthogonality of the eigenvectors of the linear stability
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FIG. 1. Turing-like pattern with large amplitude and compa-
rable diffusivities. Right: Stochastic simulations [20] of a
two-species model Eq. (8) with diffusivities δU ¼ 3.9,
δV ¼ 3.4δU and system size Ω ¼ 104. Patterns are noise induced
as they arise from a stable homogeneous state u�; i.e., the
eigenvalues λ plotted against the wavelength k are negative
(left-hand panel). However, despite the small noise, these
patterns exhibit an amplitude of order 1 (right bar). Other
parameters are a ¼ 3, b ¼ 5.8, c ¼ e ¼ 1.
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operator about the uniform stable steady state. In the related
problem of noise-induced population cycles in predator-
prey systems, amplification arises due to a resonance of
the noise with a complex eigenvalue arising from the
linearized stability about the time-independent state [19].
In fluctuation-induced stationary Turing patterns, this
mechanism cannot be relevant, because the eigenvalues
are real, not complex, and so there can be no resonant
amplification [12,13]. Our analytical theory shows that
giant amplification occurs in a wide class of fluctuation-
induced pattern-forming systems, and is a source of
amplification distinct from the population-size-dependent
resonance that was already identified to arise in spatially
uniform quasicycles [19].
An example of our key result described below is shown

in Fig. 1: stochastic simulations of the generic pattern-
forming model of Ridolfi et al. [21], performed on a linear
chain of 102 spatial cells, each cell with a system size of
Ω ¼ 104. Patterns are noise induced as they arise from a
stable homogeneous state (left-hand panel), but despite
the factor Ω−1=2 ¼ 10−2, the resulting amplitude is of order
unity.
This giant amplification is due to the counterintuitive fact

that the dynamics following a small displacement from a
stable fixed point need not relax back to the fixed point
monotonically: there can be an initial transient amplifica-
tion if the linear stability matrix is non-normal: that is, it
does not admit an orthogonal set of eigenvectors (Fig. 2).
Non-normality has been thoroughly investigated at a
deterministic level in fluid dynamics [22–24], and in
ecology [25,26], and is a common feature of pattern-
forming systems [21,27,28]. The specific contribution of
the present Letter is to systematically analyze the behavior
of non-normal systems in the presence of intrinsic noise.
Numerical results of shear flow turbulence [29] indicate
that non-normality can increase the variance of stochastic
forcing in well-mixed systems, yet an analytical treatment
is still missing. Our work treats the role of non-normality
in fluctuation-induced spatial patterns, and shows that its
widespread occurrence suggests a new way in which
fluctuation-induced Turing patterns are amplified and thus

potentially play a wider role in biological and ecological
pattern formation than previously recognized.
Non-normality in stochastic dynamics.—We begin by

quantifying the degree of amplification in a well-mixed
stochastic system. Consider the linear stochastic differential
equation for an m-component state vector ~y:

_~y ¼ A~yþ σ~ηðtÞ; ð1Þ
where the components of ~η, are normalized Gaussian white
noises and the model-dependent matrix A has negative real
eigenvalues, λi (i ¼ 1;…; m). Therefore, the fixed point
~y0 ¼ 0 is stable. The coefficient σ represents the strength of
the fluctuations and scales with the system sizeΩ−1=2 in the
case of demographic noise. Equation (1) is the prototypical
linearization of stochastic dynamics near a stable fixed
point, and we analyze the mean squared displacement
from the fixed point h‖~y‖2i, where ‖~y‖ ¼

ffiffiffiffiffiffiffiffi
~yT~y

p
, is the

Euclidean norm.
Since all the eigenvalues of A are negative, under the

deterministic part of Eq. (1), all the components of ~y decay
exponentially to zero along the eigenvectors of A, with
decay time scales τi ¼ λ−1i . In contrast, the noise term
provides stochastic agitation with a strength proportional
to σ. One might intuitively expect that an upper bound
for h‖~y‖2i could be found by replacing all the eigenvalues
by the eigenvalues corresponding to the slowest decaying
mode, λ ¼ maxfλig. Therefore, the norm of ~yu with the

dynamics _~yu ¼ λ~yu þ σ~ηðtÞ should provide an upper bound
for ‖~y‖. The mean squared norm of ~yu is readily given
by h‖~yu‖2i ¼ −mλ−1σ2=2.
However, this upper bound is only valid when the matrix

A is normal; i.e., it has an orthogonal set of eigenvectors
[29]. This can be understood by analyzing the behavior of
Eq. (1) in the deterministic limit (σ ¼ 0). Although the
asymptotic decay rate of ‖~y‖ is set by the eigenvalues of A,
the instantaneous response is given by the eigenvalues
of H ¼ ðAþ ATÞ=2, the Hermitian part of A [25]. If A is
non-normal, then the short-time dynamics of ‖~y‖ cannot
be predicted by the eigenvalues of A. Remarkably, H can
admit positive eigenvalues even though A possesses all
negative eigenvalues, in which case ‖~y‖ can experience a
transient growth, for suitable initial conditions, before it
starts decaying (Fig. 2). This mechanism, sometimes
termed as reactivity [25], occurs because the transformation
that takes ~y to the eigenbasis of A is not unitary if the
eigenvectors of A are not orthogonal, and thus does not
preserve the norm of ~y. Clearly, if the stable matrix
amplifies perturbations, the previous bound cannot hold.
In the presence of noise, the transient amplification

in the deterministic part of Eq. (1) has a lasting effect
on the steady-state amplitude of the stochastic dynamics.
We demonstrate this by computing the mean squared norm
for Eq. (1) [see the detailed derivation in the Supplemental
Material (SM) [30]]:

FIG. 2. Stable linear systems can amplify perturbations [25].
Dynamics of the Euclidean norm ‖~y‖ obtained by solving
_~y ¼ Ai~y. Reactive systems exhibit transient amplification before
relaxing to fixed point (blue lines), in contrast with conventional
response of stable systems (yellow lines). Matrices A1 and A2 (A3

and A4) have the same real (complex conjugate) eigenvalues.
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h‖~y‖2i ¼ −
σ2

2
HðAÞtrðA−1Þ; ð2Þ

where tr stands for the trace function and we define H as
the non-normality index. The term trðA−1Þ is the conven-
tional term that accounts for the matrix stability: the more
stable the matrix, the smaller the mean squared norm of ~y
due to stochastic forcing. In contrast, the non-normality
index is a real number always,H ≥ 1, and is equal to one if
and only if the matrix A admits a basis of orthogonal
eigenvectors. This is the term that accounts for amplifica-
tion due to the non-normality of matrix A, and indeed,
the further A is from normal, the larger is the index H.
We can obtain intuition about the non-normality index
in the case of a two-dimensional matrix A, where the
non-normality index H simplifies to the following simple
expression, where cot θ is the cotangent of the angle
between the two eigenvectors (see SM for derivation and
general formulas [30]):

H ¼ 1þ cot2ðθÞ
�
λ1 − λ2
λ1 þ λ2

�
2

: ð3Þ

This expression gives us quantitative understanding
about how transient amplification occurs (Fig. 3). Two
ingredients are necessary: nonorthogonal eigenvectors and
a separation of time scales given by eigenvalues of different
magnitudes. If the system is not subject to noise, suitable
initial conditions are also required (e.g., the blue vector in
Fig. 3). Because of the separation of time scales, the
component of ~y along the eigenvector associated with the
faster eigenvalue decays quickly, whereas in the slow
direction the dynamics is approximately constant. However,
because of nonorthogonality, the norm of ~y instantaneously
increases as ~y moves along the fast eigenvector, until the
slow manifold starts attracting the trajectory back to the
fixed point.
Non-normality in spatially extended pattern

formation.—We now analyze spatially extended, diffu-
sively coupled pattern-forming systems driven by noise.
Specifically, we consider the generic equation

∂~q
∂t ¼ ~fð~qÞ þ D∇2~qþ σ~ξð~x; tÞ; ð4Þ

where ~x is a space variable, the vector ~q ¼ ðq1; q2Þ, the
diffusion matrix D ¼ diagðD1; D2Þ, and ξi’s, the compo-

nents of ~ξð~x; tÞ, are normalized δ-correlated Gaussian white

noises. Also, we assume that ~fð~qÞ has a stable fixed point
~q�, and all of the eigenvalues of the linear stability or
Jacobian matrix J ¼ ∇~qfð~qÞj~q� have negative real part.
We first show that in the presence of noise, system

Eq. (4) exhibits patterns in a parameter regime where the
fixed point ~q� is stable. The stability of ~q� can be inspected
by defining the deviation ~p ¼ ~q − ~q� and linearizing near
~q�, yielding

∂ ~p
∂t ¼ J~pþ D∇2 ~pþ σ~ξð~x; tÞ: ð5Þ

The spatial degrees of freedom can be diagonalized by a

Fourier transform (~x↦~k), resulting in

d~p~k

dt
¼ K~p~k þ σ~ξð~k; tÞ; K ¼ J − k2D: ð6Þ

Equation (6) is a complex version of Eq. (1).
We start by reviewing the stability of the deterministic

part of Eq. (5). If D1 ¼ D2, matrix D is a multiple of the
identity, and the eigenvalues of K will be the eigenvalues of

J shifted by −k2D for each ~k, resulting in a more stable
operator. However, in the case that the diffusion rates are
sufficiently different, the largest eigenvalue of K can have a
nonmonotonic behavior as a function of k2, and in some

cases have positive eigenvalues for a small range of ~k

peaked around some nonzero value ~k0. In this case, the

modes near ~k0 will grow, leading to the formation of
deterministic Turing patterns [1]. Therefore, the formation
of deterministic Turing patterns is dependent on a large
separation of the diffusion constants [6–8].
In contrast, consider an intermediate scenario with

diffusion constants different enough so that they can cause
a nonmonotonic behavior for the largest eigenvalue of K as

a function of k2 peaked around some value ~k0, but not

enough for the largest eigenvalue to be positive at ~k0 (left-

hand panel of Fig. 1). In this case, all the ~k modes decay

quickly to zero, but the modes with ~k ∼ ~k0 decay slower
than the others, causing a transient pattern. In the presence

of the noise term ~ξð~k; tÞ in Eq. (6), while the modes with
smaller eigenvalues decay quickly to zero, the slow modes
drift away from the fixed point under the influence of the

noise. The drift of the ~k modes near ~k0 produces persistent
steady-state fluctuation-induced patterns with well-defined
length scales [12,13]. While the stochastic Turing patterns

FIG. 3. Transient amplification is caused by nonorthogonal
eigenvectors and a separation of time scales. The stable fixed
point is subject to the perturbation ~yð0Þ. Because of the separation
of time scales, the deterministic trajectory (blue arrowed line) is
initially parallel to the fast eigenvector before relaxing to the slow
manifold. From A to B, the trajectory has magnitude greater
than jj~y0jj.

PRL 118, 018101 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

6 JANUARY 2017

018101-3



have a less stringent requirement than the deterministic
Turing patterns for the ratio of the diffusion constants,
their amplitude is limited to the amplitude of the drift
under the noise suppressed by the slow deterministic decay.
As discussed in the previous section, the mean squared
amplitude is of order λ−1σ2, unless we can show that the
system is non-normal.
We now show that in order for a system described by

Eq. (4) to produce stochastic patterns, it is necessary for the
matrix J in Eq. (5) to be non-normal. The real part of the
largest eigenvalue of a normal matrix is equal to that of its
Hermitian part. Therefore, we can measure how far from
normal the matrix J is by finding a lower bound on the diff-
erence between the largest eigenvalue of H ¼ ðJ þ JTÞ=2
and that of matrix J (the proof of this inequality is given
in SM [30]):

λ1ðHÞ − Re(λ1ðJÞ) ≥ δþ k20Dmin; ð7Þ

where δ ¼ Re(λ1½Kð~k0Þ�) − Re(λ1ðJÞ) > 0, ~k0 is the wave
vectors at which the real part of the largest eigenvalue
peaks, and Dmin is the smallest of the diffusion constants.
Since the non-normality of J should be independent of

the diffusion constants, this lower bound can be extended to
the supremum of the right-hand side of the inequality
Eq. (7) over all the matrices D that produce spatial patterns

and their corresponding ~k0. In particular, if a system admits
deterministic Turing patterns for some set of diffusion
constants, this inequality implies that the matrix J would be
reactive [i.e., λ1ðHÞ ≥ 0; this special case was previously
proven by Neubert et al. [27]]. In this case, if experimen-
tally measured values of diffusion constants do not fall
within the Turing pattern regime, the system is still reactive
and capable of exhibiting amplified stochastic patterns.
Worked-out example.—Finally, we apply our theory to a

concrete model that is representative of a large class of
systems. The model is given by Eq. (4) with two species

U and V with densities ~q ¼ ðu; vÞ, and ~fðu; vÞ ¼
(uðauv − eÞ; vðb − cu2vÞ), with a; b; c; e > 0 [21]. The
corresponding individual-level model is defined by con-
sidering the following reactions that occur on a discretized
m-dimensional space with Lm lattice sites,

2Ui þ Vi⟶
a
3Ui þ Vi; Vi⟶

b
2Vi;

Ui⟶
e ∅; 2Vi þ 2Ui⟶

c
Vi þ 2Ui;

Ui⟶
δU Uj; Vi⟶

δV Vj; j ∈ hii; ð8Þ

where Ui and Vi are the species U and V on the site i for
i ¼ 1;…; Lm and hii is the set of sites neighboring i.
The state of the system is specified by the concentration
vectors ~qi ≡ ðui; viÞ≡ ðUi; ViÞ=Ω, where Ω is the volume
of each site. The diffusion rates δu and δv are related to
the diffusion constants by ðδu; δvÞ ¼ ðDU;DVÞ=Ω2=m. The

discrete-space version of Eqs. (4)–(6) are derived by
expanding in powers of Ω−1=2 the master equation corre-
sponding to scheme Eq. (8) (see SM for the deriva-
tions [30]).
The pattern-forming behavior of the model described

by Eq. (8) only depends on the ratio of the diffusion
constants DV=DU and the ratio of the reaction rates of the
two linear reactions b=e. The left-hand panel of Fig. 4
shows the regime of parameters in which the system
exhibits either stochastic or deterministic Turing patterns
[34]. As expected, deterministic patterns emerge only when
the ratio DV=DU of diffusion constants is very large (above
the blue line in Fig. 4, which grows rapidly outside of the
figure), while the requirement on this ratio for the stochastic
patterns is drastically reduced. In the absence of the non-
normality effect, one would expect that only stochastic
patterns with parameters very close to the deterministic
regime would be observed, since far from this regime, the
amplitude of the patterns would be too small to detect.
However, since for all b=e > 1 there is a DV=DU above

which the system exhibits deterministic Turing patterns, J
is reactive. Therefore, even when the system is far from the
parameter regime of deterministic patterns, the amplitude
of the stochastic patterns is far larger than what one would
expect from the analysis of the eigenvalues. We can see this
by analyzing the amplitude of the patterns at the point P in
Fig. 4. This point (b=e ¼ 5.8 and DV=DU ¼ 3.4) is chosen
to be very far from the deterministic Turing pattern regime.
At this b=e ratio, the ratio of the diffusion constants has
to be at least 10 times larger for the system to exhibit
deterministic Turing patterns. The amplitude of the patterns
as determined by Eq. (2) is dependent on the eigenvalues
of K (fixed by the choice of the point P) and the non-
normality indexHðKÞ, which can be tuned by changing the
ratio a=c2=3 without changing the point P. The right-hand
panel of Fig. 4 shows that the amplification of stochastic
patterns for the point P varies over orders of magnitude for
a small range of a=c2=3.

FIG. 4. Stochasticity allows pattern formation for similar
diffusivities. Left: Phase diagram of model Eq. (8) showing that
the pattern-forming behavior of this model depends only on the
ratios b=e and DV=DU (see SM for analytical expression for the
boundaries [30]). Right: Semi-log plot of non-normality index for
the point P as a function of a=c2=3. Black markers are ampli-
fications measured in simulations.
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The right-hand panel of Fig. 1 shows the time series of
the amplified stochastic Turing patterns in the concentra-
tion of the species U, in a simulation of our model in one
dimension (for the point specified in the right-hand panel
of Fig. 4). The mean squared amplitude of these spatial
patterns is about 0.21, while the upper bound for the
amplitude of the pattern in the absence of non-normality is
2.5 × 10−3. The non-normality index H (of the slowest
Fourier mode k0 ¼ 6) is about 103, justifying the 2 order of
magnitude amplification in the amplitude of the stochastic
patterns.
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