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Glasses exhibit a liquidlike structure but a solidlike rheological response with plastic deformations only
occurring beyond yielding. Thus, predicting the rheological behavior from the microscopic structure is
difficult, but important for materials science. Here, we consider colloidal suspensions and propose to
supplement the static structural information with the local dynamics, namely, the rearrangement and
breaking of the cage of neighbors. This is quantified by the mean squared nonaffine displacement and the
number of particles that remain nearest neighbors for a long time, i.e., long-lived neighbors, respectively.
Both quantities are followed under shear using confocal microscopy and are the basis to calculate the affine
and nonaffine contributions to the elastic stress, which is complemented by the viscoelastic stress to give
the total stress. During start-up of shear, the model predicts three transient regimes that result from the
interplay of affine, nonaffine, and viscoelastic contributions. Our prediction quantitatively agrees with
rheological data and their dependencies on volume fraction and shear rate.
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Although glasses behave like solids, they have a liquid-
like structure. Liquids and glasses exhibit similar static
(time averaged) structural properties, such as the radial
distribution function, and two- and four-point correlation
functions [1]. These quantities thus cannot be directly
responsible for the mechanical properties of glasses. In
contrast, the diffusive dynamics of liquids distinguishes
them from glasses, which show arrested dynamics and
caging [1,2]. Under shear, the cage of nearest neighbors is
deformed and becomes anisotropic [3–5], which has been
studied by experiments and mode coupling theory and
linked to enhanced superdiffusive dynamics [3–7] and
negative stress correlations [7,8], and might lead to yielding
[9,10]. This suggests that, to understand the mechanical
response of glasses, the effects of shear on the structure and
dynamics need to be considered for individual particles as
well as their neighbors.
Symmetry is also important. A centrosymmetrical crystal

deforms affinely under shear with its free energy increasing
quadratically with applied strain [11,12]. However, in a
glass, the particles are not local centers of symmetry.
Hence, upon deformation, the forces on each particle do
not balance and result in an additional net force. This is
relaxed through nonaffine motions that lower the free
energy and the shear modulus [13]. Thus, shear induces
both affine and nonaffine displacements [11], and their
quantitative description is a prerequisite to predict the
rheological response of glasses.
As affine and nonaffine displacements cannot be dis-

tinguished based on structural properties alone, dynamical
features must be included. The importance of cages for the

glass transition suggests to consider these entities and their
rearrangements. Previous approaches, like mode coupling
theory, considered cage rearrangements on a mean-field
level in terms of shear-induced (mean) cage anisotropy
[3–8]. In contrast, using confocal microscopy we explicitly
consider strain-induced rearrangements on a single-particle
level, in particular, of the nearest neighbors. Elasticity is
found to be conferred by particles that remain nearest
neighbors for a long time, i.e., long-lived neighbors.
Furthermore, instead of single-particle dynamics, we deter-
mine the dynamics of particles with respect to their nearest
neighbors, quantified by their mean squared local nonaffine
displacement [14,15]. Based on these experimentally
accessible microscopic parameters, we calculate, from first
principles, the total stress, which includes the affine and
nonaffine contributions to the elastic stress as well as the
viscoelastic stress.
To test and illustrate this approach, we investigate a

colloidal model system and its shear-induced affine and
nonaffine displacements during start-up of shear. This is a
standard rheological test that is routinely applied to a broad
range of systems, including colloidal glasses, gels, and
polymers [3–8,16–26]. Nevertheless, its link to the single-
particle level is only starting to be explored experimentally
[3–7,16,17].
We investigated dispersions of polymethylmethacrylate

(PMMA) hard-sphere-like particles [27] with volume
fractions 0.565 ≤ ϕ ≤ 0.600 [28], i.e., around the glass
transition [2]. The samples contained either small spheres
(radius R1 ¼ 150 nm, polydispersity σR;1 ≈ 12%) or large,
fluorescently labeled spheres (R2 ¼ 780 nm, σR;2 ≈ 6%).
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Start-up shear experiments were performed using a stress-
controlled rheometer (TA Instruments, DHR3) for the
small particles and a strain-controlled rheometer (TA
Instruments, ARES-G2) for the large particles, with
cone-plate geometries. For the microscopy experiments,
we used a home-built shear cell (described in Ref. [16]).
Loading and history effects were reduced by a rejuvenation
procedure before starting each measurement. Image stacks
were acquired using a confocal unit (Visitech, VT-Eye)
mounted on an inverted microscope (Nikon, Ti-U). The
stacks of 512 × 512 × 50 pixels or 51 × 51 × 10 μm3 con-
tain ∼8500 particles and were acquired in Δt ¼ 1.83 s.
Further experimental details are in theSupplementalMaterial
[29]. From one series of confocal images, particle coordi-
nates and trajectories were extracted using standard routines
and then refined [31,32].
The structure and dynamics of the large particles with

ϕ ¼ 0.565 were investigated by confocal microscopy. The
mean number of nearest neighbors in the quiescent sample,
ntotðγ ¼ 0Þ ¼ 11.6, was determined from the integral of the
first peak of the radial distribution function gðrÞ, taken up
to the first minimum at r ¼ 2.6R.
Based on gðrÞ alone, long-lived neighbors cannot be

distinguished from short-lived neighbors. Neighbors were
considered long lived if they remained neighbors during
the lag time τ ¼ 25Δt ¼ 8.0τB with the Brownian time
τB ¼ 6πηsR3=ðkBTÞ ¼ 5.7 s, i.e., if they were never farther
apart than r ¼ 2.6R while the strain was increased from
γ − _γτ=2 to γ þ _γτ=2. This value of τ was chosen because it
is the longest experimentally accessible lag time before the
particles leave the field of view, but nevertheless short
compared to the imposed time scale, i.e., the inverse shear
rate, _γτ ≪ 1. With this definition of long lived, we find the
mean number of long-lived neighbors nðγÞ to decrease with
strain γ (Fig. 1). Since the imposed deformation Δγ ¼ _γτ
during the fixed time interval τ is independent of the
accumulated strain γ, the decrease of nðγÞwith γ is only due
to the shear-enhanced mobility [3–7,16] and not the
increasing (affine) deformation γ.
The observed decrease of nðγÞ can be described by a

superexponential decay from an initial, n0, to a final, n∞,
value,

nðγÞ ¼ ðn0 − n∞Þe−ðγ=ξÞ2 þ n∞; ð1Þ

with the characteristic decay parameter ξ (Fig. 1). This
appears reasonable as a neighbor is more likely to leave
once other neighbors have left the cage and cage rearrange-
ments have occurred. Superexponential dependencies have
also been observed in related situations [33–35]. Once the
system has become fluidlike, a finite n∞ ¼ 6 is expected
due to the steady-state hydrodynamic flow and its local
structure [36]. This flow pushes the six neighbors in
compression direction towards the particle and thus they
remain for a long time. A fit yields n0 ¼ 10.7. Together

with ntot ¼ 11.6, this implies that initially on average only
about one neighbor leaves during the lag time τ, while the
remaining n0 neighbors are long lived. This appears
reasonable given the large ϕ. Neighbors become consid-
erably shorter lived as the system starts to flow under shear
[3–6,37]. In the steady state (γ → ∞) about six neighbors
leave during τ. The characteristic strain during which the
steady state is approached was found to be ξ ¼ 0.31. This
is consistent with rheological data obtained previously
[3–8,16,18] and with new data shown below. Thus, the
parametrization, Eq. (1), is supported by experimental
evidence.
To quantify nonaffine rearrangements on a local (cage)

level, we followed an established formalism [14,15,18].
First, the actual displacements of a particle’s neighbors
during a lag time δt are determined. Second, one calculates
the notional displacements of the same neighbors during
the same δt in a fictitious affine rearrangement that is based
on a local strain γð~rÞ. Then, the squared difference D2ðδtÞ
between these two displacements is calculated and γð~rÞ
chosen to minimize D2ðδtÞ. This minimum value D2

minðδtÞ
characterizes the smallest deviation of the neighbors’
displacements from affine displacements. Hence, it quan-
tifies the nonaffine rearrangements on a single-particle
level. The lag time δt should be short compared to
t ¼ γ=_γ. Following previous work [15], we take δt ¼ Δt,
when the motion is expected to be maximally correlated,
i.e., non-Gaussian. For each pair of image stacks at γ,
D2

minðγ;ΔtÞ is determined and its ensemble average,
hD2

minðγ;ΔtÞi, calculated. It is found to increase with γ
(Fig. 2). This increase in nonaffine rearrangements is
consistent with the decrease of the number of long-lived
neighbors, nðγÞ (Fig. 1).
The hD2

minðγ;ΔtÞi characterizes the mean squared local
nonaffine displacement, u2NAðγÞ ∼ hD2

minðγ;ΔtÞi=ð2RÞ2.
For glasses, nonaffine displacements are about 20% of
affine displacements [14,38], which, by definition, are γ.
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FIG. 1. Mean number of long-lived neighbors nðγÞ as a
function of strain γ obtained from (main figure) confocal
microscopy and (inset) rheology for shear rate _γ ¼ 0.0028 s−1,
volume fraction ϕ¼0.565, and the large particles (R2¼780nm).
The solid lines represent fits [Eq. (1)], for which the first few data
points (open circles) have been disregarded in the case of the
rheological data.
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For small γ, thus uNA ≃ bγ with b ≈ 0.2. At larger γ,
higher-order terms might be important; uNA ≃ bγ þ cγ2

with a phenomenological coefficient c. Thus, to cubic
order,

u2NAðγÞ≃ aþ b2γ2 þ 2bcγ3; ð2Þ

where the offset a accounts for noise arising from insta-
bilities of the setup and uncertainties in the particle
location. This yields a good fit (Fig. 2) with a ¼ 0.0060,
b ¼ 0.18 (comparable to the expected value of about 0.2
[38]), and c ¼ 0.058. The small value of c suggests c ≈ 0.
A fit with c ¼ 0 is almost identical and yields a ¼ 0.0060
and b ¼ 0.20 (Fig. 2). For the applied strain, γ < 0.3;
therefore, a linear approximation seems sufficient in the
present case.
For the same sample, the rheological response to the

application of a constant strain rate _γ, i.e., σtotðγÞ, has been
measured [Fig. 3(a)]. This will be compared to the transient
total stress σtotðγÞ as calculated based on the microscopic
parameters nðγÞ and u2NAðγÞ.
According to the Born-Huang theory of lattice dynamics

extended for an isotropic random distribution of particles as
in a glass, the affine part of the shear modulus reads [40,41]

GAðγÞ ¼
1

5π

κϕ

R
nðγÞ; ð3Þ

with the effective (entropic) spring constant of a bond
κ ¼ ½d2VeffðrÞ=dr2�r¼rm . It is linked to the minimum of the
pair potential of mean force VeffðrÞ, located at r ¼ rm, and
thus to the first maximum of the radial distribution
function, gðrÞ, since VeffðrÞ ¼ −kBT ln gðrÞ [42]. The

experimental gðrÞ yields κ ¼ 50.2kBT=R2 [29], which is
consistent with theoretical predictions [43].
Based on a third-order expansion of the nonaffine part of

the elastic free energy density, FNA [11], the nonaffine part
of the shear modulus, GNA ¼ ∂2FNA=∂γ2, is given to first
order by

GNAðγÞ ¼
1

5π

κϕ

R
ð6þ cγÞ: ð4Þ

The term linear in γ takes into account the nonlinear
behavior, quantified by u2NAðγÞ [Eq. (2)]. In our sample,
the absence of higher-order terms in u2NAðγÞ implies a γ
independent GNA. Nevertheless, it constitutes an important
(constant) negative contribution to the total shear modulus.
It also implies that the departure from linearity of the shear
modulus is dominated by the loss of long-lived neighbors,
i.e., the decrease of GA.
The shear moduli are linked to the corresponding affine

FA, nonaffine FNA, and total Fel elastic free energies;
FelðγÞ ¼ FAðγÞ − FNAðγÞ ¼ 1

2
ðGA −GNAÞγ2. The elastic

(reversible) stress σel ¼ ∂FelðγÞ=∂γ, hence, is

σelðγÞ ¼
κϕ

10πR

�
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FIG. 2. (a) Slices in the velocity-vorticity plane rendered from
confocal microscopy images at strains γ ¼ 0.072, 0.164, and
0.277 (left to right). The squared nonaffine displacement of each
particle during lag time Δt, quantified by D2

minðγ;ΔtÞ=ð2RÞ2, is
indicated by the color of the spheres. (b) Ensemble average
hD2

minðγ;ΔtÞi=ð2RÞ2 versus γ. The solid and dashed lines
represent (almost identical) fits with cubic and quadratic order,
respectively [Eq. (2)].
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FIG. 3. Normalized transient total stress σtotðγÞ=σtotðγ → ∞Þ as
a function of strain γ ¼ _γt during start-up for (a) large particles
and (b) small particles with different shear rates _γ (main figure)
and volume fractions ϕ (inset) with _γ and ϕ as indicated [39].
Solid lines represent fits, dotted and dashed lines represent the
elastic σel [Eq. (5)] and viscous σvisc [Eq. (6)] contributions,
respectively. Blue circles in (a) indicate σel as determined from
the individual nðγiÞ (data points in Fig. 1) without using Eq. (1)
(each symbol represents the average of four data points). The
different regimes are indicated in (a).
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For c ≠ 0, this implies σelðγ → ∞Þ → −∞, which is
unphysical. To avoid introducing free parameters, σelðγÞ
is assumed to attain a constant value beyond the character-
istic strain ξ of the exponential decay; σelðγ ≥ ξÞ ¼ σelðξÞ,
which here vanishes since c ¼ 0.
For small strains γ, G¼½∂σtotðγÞ=∂γ�γ→0 ≈

½∂σelðγÞ=∂γ�γ→0¼ðκϕ=5πRÞðn0−6Þ, as previously calcu-
lated [13,41]. Hence, from the initial slope we can obtain κ,
here κ ¼ 49.7kBT=R2, in agreement with the value based
on gðrÞ from confocal microscopy.
The viscoelastic (dissipative) stress σvisc is due to

internal friction. For a linear viscoelastic solid, just as
for a Maxwellian fluid, under start-up shear, σvisc ¼
_γηf1 − exp ð−γ=_γτvÞg [44]. In glassy systems, however,
the complex energy landscape leads to nonexponential
behavior, typically described by [45]

σviscðγÞ ¼ _γηð1 − e−ðγ=_γτvÞβÞ: ð6Þ

The viscosity of the suspension η is determined from the
steady state, σtotðγ → ∞Þ ≈ σviscðγ → ∞Þ ¼ _γη, i.e., the
flow curve. Here, η ¼ 2.6 Pa s [Fig. 3(a)]. Furthermore, η
is linked to G through η ¼ ηs exp ðGV�=kBTÞ, where V� is
an activation volume expected to be of the order of a particle
volume [46,47]. This is indeed found: V� ¼ 0.20ð4π=3ÞR3

2.
The viscous time scale τv [48–51] can be estimated through
Maxwell’s expression [47], τv ¼ η=G ¼ 36 s ¼ 6.3τB, and
hence can be determined from the initial slope and steady-
state value of σtot. For the stretching exponent β, typically
1.5≲ β ≲ 1.8 is found for quiescent soft glasses and gels
[48–50] and significantly larger values in the hydrodynamic
limit, β > 2 [50,51]. Since the present system is in the
hydrodynamic limit and subject to shear, a value consid-
erably larger than 2 is expected. This is also consistent with
the reported superdiffusive dynamics [4,7,16].
Finally, the transient total stress σtotðγÞ ¼ σelðγÞ þ

σviscðγÞ [52]. A fit with τv and β as the only free parameters,
for which nevertheless estimates exist, describes the exper-
imental data very well [Fig. 3(a)]. Only at the transition
from elastic to viscous behavior a spurious dip occurs at
γ ≈ ξ due to the abrupt transition to the constant value
σelðξÞ, as anticipated and discussed above [Eq. (5)]. We
refrain from a more detailed and “smoother” modeling of
this transition to avoid increasing the number of adjustable
parameters. The values of the fit parameters are consistent
with expectations; τv ¼ 89 s ≈ 16τB is similar to the
predicted value of about 6.3τB, and β ¼ 4.6 is considerably
larger than 2, as expected.
The elastic stress σel was also determined based on the

individual nðγiÞ (data points in Fig. 1), i.e., without using
the empirical dependence of the mean number of long-lived
neighbors n on strain γ [Eq. (1)]. The agreement with the
calculation using the empirical relation [Fig. 3(a)] indicates
that it does not introduce artifacts. Furthermore, from the
rheology data, i.e., the total stress σtotðγÞ, the mean number

of long-lived neighbors nðγÞ was calculated using the same
relationships but in inverse order (Fig. 1, inset). A fit based
on Eq. (1) yielded similar parameters, ξ ¼ 0.30, n0 ¼ 10.1,
and n∞ ¼ 6.2. This supports the consistency of the model
and the empirical dependence of n on γ [Eq. (1)].
The dependencies on ϕ and _γ were investigated using

smaller particles. The normalized σtotðγÞ=σtotðγ → ∞Þ are
almost independent of ϕ within the range investigated
[Fig. 3(b), inset], whereas a strong dependence on _γ is
observed [Fig. 3(b)], as previously reported [3–6,16,53].
The small particles result in a strong rheological signal, but
preclude the use of confocal microscopy to obtain the
parameters describing the long-lived neighbors and the
nonaffine displacements. Thus, we assume that n0 ¼ 10.7
and c ¼ 0 for all investigated ϕ and _γ, while one value of ξ
was fitted for each additional _γ. Apart from these three
values for ξð_γÞ (bold in Table SM-2 in Supplemental
Material [29]), all other values can be deduced based on
the relationships introduced above, the observation that
σtotðγÞ=σtotðγ → ∞Þ is almost independent of ϕ, and
the values determined for the large spheres. (Details of
the fitting procedure and the fitted values are given in the
Supplemental Material [29].) The fits to σtotðγÞ show very
good agreement with the data, again, except for the
expected spurious dip [Fig. 3(b) and Fig. SM-2 in
Supplemental Material [29]]. We found that ξ increases
with _γ, as previously predicted [53]. This is attributed to the
increasing importance of shear compared to Brownian
motion and, hence, the dominance of affine motions which
result in neighbors remaining neighbors for larger strains.
Furthermore, τvð_γÞ ∼ ηð_γÞ=κð_γÞ decreases with _γ, as
expected for an increasingly fluidized system with the
diffusion coefficient Dð_γÞ ∼ _γ0.8 [54] or _γ1 [55]. Since τv
represents a relaxation time under shear, τv ∼D−1 ∼ _γ−0.8

or _γ−1. Our data indicate τv ∼ _γ−0.80, in agreement with one
of the previous findings [54].
In all cases, the response shows three distinct regimes

[Fig. 3(a)]. At very low strains, the elastic response
dominates (σel ≫ σvisc); the sample behaves solidlike.
Upon increasing the strain, the number of long-lived
neighbors nðγÞ decreases (Fig. 1) and cages break.
Concomitantly, the nonaffine displacements u2NAðγÞ sig-
nificantly increase (Fig. 2). The system yields and the
response is dominated by nonaffine rather than affine
motion. Hence, the nonaffine elastic free energy becomes
important and leads to a significant negative contribution to
Fel which, hence, vanishes, as does G. Then, in the second
viscoelastic liquidlike regime, the elastic component
decreases and the increasing viscous dissipative component
becomes dominant. Once the elastic contribution vanishes,
the stress is entirely viscous and the glass turns into a
viscous fluid.
To conclude, we related the macroscopic transient

rheological response of glasses to the shear-induced micro-
scopic structural evolution. The long-lived nearest
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neighbors forming the cage were identified to be the crucial
structural feature with their number nðγÞ decreasing under
shear. At the same time, nonaffine rearrangements of the
neighbors, quantified by the mean squared local nonaffine
displacementu2NAðγÞ, increase.Bothmicroscopic parameters
are experimentally determined and form the basis for the
analytical calculation of the rheological response. The affine
and nonaffine contributions to the elastic free energy and
its derivative, the elastic stress, are supplemented by the
viscoelastic stress to give the total stress. The predictions for
the transient total stress agree with experimental rheological
data for different volume fractions ϕ and shear rates _γ. Three
regimes are identified that are dominated by the affine,
nonaffine, and viscoelastic contributions, respectively. The
agreement supports the proposed framework and its quanti-
tative link between themacroscopic rheological response and
the microscopic structural and dynamical evolution.
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