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This Letter addresses the dynamical quantum problem of a driven discrete energy level coupled to a
semi-infinite continuum whose density of states has a square-root-type singularity, such as states of a free
particle in one dimension or quasiparticle states in a BCS superconductor. The system dynamics is strongly
affected by the quantum-mechanical repulsion between the discrete level and the singularity, which gives
rise to a bound state, suppresses the decay into the continuum, and can produce Stueckelberg oscillations.
This quantum coherence effect may limit the performance of mesoscopic superconducting devices, such as
the quantum electron turnstile.
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The Landau-Zener (LZ) transition between two coupled
quantum states whose energies cross in time is a para-
digmatic situation in quantum mechanics. Because of its
generality and simplicity, the LZ model, originally pro-
posed to describe atomic collisions [1–3] and spin dynam-
ics in a magnetic field [4], was later applied to many
different phenomena, such as electron transfer in donor-
acceptor complexes [5], spin dynamics in magnetic
molecular clusters [6], molecular production in cold atomic
gases [7], electron pumping [8] and capture [9] in quantum
dots, dissipation in driven mesoscopic rings [10], or in
superconductor tunnel junctions [11,12]. In the course of
intense research in various fields, several generalizations of
the two-level LZ model to multiple levels have been found
[13–21] including finite-time exact solutions [22,23], and
even many-body versions of the LZ model have been
considered [7,24–26]. However, these generalizations still
deal with discrete energy levels. A notable exception is
Ref. [13], whose authors analyzed a single discrete level
driven linearly through an arbitrary spectrum, which could
also be continuous.
In the present Letter, I present another extension of the

Landau-Zener problem involving a discrete level coupled to
a continuum of states, which has an approximate analytical
solution in the long-time limit. The continuum states are
assumed to have positive energies, E > 0, with the density
of states (DOS) νðEÞ having a singularity νðEÞ ∝ 1=

ffiffiffiffi
E

p
at

E → 0þ. This singularity is the essential ingredient of the
problem. Physically, such a continuum can be represented
by a one-dimensional wire with the parabolic dispersion,
or by quasiparticle states in a BCS superconductor above
the superconducting gap. The discrete level (located on an
impurity or a small quantum dot) initially has large negative
energy and contains one particle. Then, its energy Ed is
moved inside the continuum (e.g., by applying a gate
voltage), where it stays for some time, and then is driven
back to large negative energies, as shown in Fig. 1 by the

dashed line. The quantity of interest is the probability p∞
for the particle to stay on the discrete level without being
ejected into the continuum. A related problem of a
vanishing bound state in atom-ion collisions was consid-
ered in Ref. [27].
The practical motivation for the present study comes

from the quantum electron turnstile, a nanoelectronic
device transferring electrons one by one, with a potential
metrological application as a current standard (see reviews
[28,29]). The electron transfer occurs via a small metallic
nanoparticle sandwiched between two superconducting
electrodes [30]. For a small enough particle, the electron
confinement is very strong, so there is effectively a single
electronic level whose double occupancy is prohibited by
the Coulomb repulsion, and whose energy is controlled
by a nearby gate electrode [31,32]. The key step of the
operation is the electron ejection from the nanoparticle
level, driven by the gate voltage, into the empty quasipar-
ticle states on one of the superconducting electrodes. If the

FIG. 1. A sketch of the time dependence of various energies.
The gray area at E > 0 represents the continuum with the
singularity in the DOS at E → 0. The dashed blue line shows
the bare discrete level EdðtÞ, driven inside the continuum for a
finite time. The solid red line shows the adiabatic ground
state E�ðtÞ.
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superconducting gap is large enough, one can consider the
single-particle problem. The level trajectory then corre-
sponds to that shown in Fig. 1, with the energy counted
from the BCS singularity. The survival probability p∞
contributes to the turnstile operation error.
The standard description of the decay into a continuum

is by the perturbative Fermi golden rule, which gives the
decay rate ΓðEdÞ for a fixed level energy Ed. Application of
the golden rule at each instant of time gives

p∞ ¼ exp

�
−
Z
EdðtÞ>0

Γ(EdðtÞ)dt
�
; ð1Þ

where the integration is over the time interval during which
the level stays inside the continuum. Obviously, Eq. (1) is
not valid for a too fast drive leading to a large energy
uncertainty. Much less obvious is the breakdown of the
quasistationary Eq. (1) at slow drive. It is the main focus of
the present Letter.
The key fact is that for a fixed Ed, the exact eigenstates of

the coupled system form a continuum at E > 0, and in
addition, there is a discrete bound state at an energy
E ¼ E� < 0 [33–35], similar to the Yu-Shiba-Rusinov
states bound to a magnetic impurity [36–39]. For large
negative Ed, the bound state approximately coincides with
the bare discrete level, E� ≈ Ed. For Ed > 0, no matter how
large, the bound state with E� < 0 still exists, although for
Ed → þ∞ its energy approaches the continuum and its
overlap with the bare discrete state vanishes. The existence
of the bound state is a consequence of the DOS singularity
at E → 0þ and can be viewed as due to the quantum-
mechanical repulsion between the bare level and the
singularity. As the bound state is the adiabatic ground
state of the coupled system, for slow drive the particle will
always stay in it, implying p∞ → 1.
To describe the crossover between the regime of Eq. (1)

and the adiabatic regime with p∞ → 1, one has to analyze
the dynamical problem. Below, its analytical solution is
presented for a special case of the parabolic time depend-
ence EdðtÞ, obtained by adapting the method of Demkov
and Osherov [13]. Remarkably, the survival probability has
the two-path structure p∞ ¼ jAd þ A�j2, where Ad corre-
sponds to the resonance in the continuum (the dashed line
in Fig. 1) with jAdj2 decaying according to Eq. (1), while
the nondecaying A� is the contribution of the adiabatic
ground state (the solid line in Fig. 1). The cross term in p∞
describes Stueckelberg-like interference between the two
paths, leading to an oscillatory dependence of p∞ on the
drive parameters. Indeed, the bound state may be viewed
as a result of avoided crossing between the discrete level
and the singularity; the double passage of this crossing is
similar to the Stueckelberg interferometer.
The model.—In a BCS superconductor, the quasiparticle

DOS is given by νðϵÞ ¼ ν0θðjϵj − ΔÞjϵj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 − Δ2

p
, where

ν0 is the normal-state DOS, the energy ϵ is counted from the

Fermi level, 2Δ is the superconducting gap, and θðϵÞ is the
step function. In the vicinity of the BCS singularity at
ϵ → Δ, the quasiparticle energy, counted from Δ (it is
convenient to shift the energy reference as E ¼ ϵ − Δ), can

be approximated as Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2k þ Δ2

q
− Δ ≈ ξ2k=ð2ΔÞ, and

the Bogolyubov quasiparticle factors uk ≈ vk ≈ 1=
ffiffiffi
2

p
.

Here the index k labels the quasiparticle states, and ξk
are the normal-state quasiparticle energies, so that the state
summation

P
k is represented as ν0

R
dξk. The particle

wave function has a component ψd on the bare discrete
level, and components ϕk on the continuum states. They
satisfy the two components of the Schrödinger equation
(we set ℏ ¼ 1):

i
dψd

dt
¼ EdðtÞψd þ

ffiffiffiffiffiffiffiffiffiffi
γ0

2πν0

r
ϕk; ð2Þ

i
dϕk

dt
¼ ξ2k

2Δ
ϕk þ

ffiffiffiffiffiffiffiffiffiffi
γ0

2πν0

r
ψd; ð3Þ

where the coupling strength is parametrized by 2γ0, the
energy-independent decay rate in the normal state. These
equations can be equivalently rewritten in the coordinate
representation, ϕk ¼

R
ϕðxÞeikxdx, ξ2k → −v2F∂2

x, where vF
is the Fermi velocity; then they become identical to the
Schrödinger equation for a simple one-dimensional wire
coupled to a discrete site at x ¼ 0.
The exact eigenstate energies for fixed Ed are found by

substituting iðd=dtÞ → E and eliminating ϕk. This gives
the equation G−1

d ðEÞ ¼ 0, where the bare discrete level
Green’s function and the self-energy are defined as

GdðEÞ ¼
1

E − Ed − ΣðEÞ ; ΣðEÞ ¼ −

ffiffiffiffiffiffiffiffiffi
γ20Δ
−2E

r
: ð4Þ

ΣðE > 0Þ is imaginary, describing the particle escape from
the discrete level into the continuum with the rate
ΓðEÞ ¼ −2ImΣðEþ i0þÞ. ΣðE < 0Þ is real and negative,
describing the quantum-mechanical level repulsion. The
divergence of ΣðE → 0−Þ results in the existence of a real
solution ofG−1

d ðEÞ ¼ 0 with E ¼ E� < 0 for any Ed. Thus,
the spectrum consists of a discrete bound state at E ¼ E�,
represented by the isolated pole of GdðEÞ, and of the
continuum at E > 0, corresponding to the branch cut offfiffiffiffiffiffiffi
−E

p
. The weight of the bare discrete level in the exact

bound state is given by the residue Z of GdðEÞ in the pole
E ¼ E�. For positive Ed ≫ ðγ20ΔÞ1=3, the bound state is
shallow, E� ≈ −γ20Δ=ð2E2

dÞ, and the weight is small,
Z ≈ γ20Δ=E3

d.
Knowledge of the eigenstates at fixed Ed enables one to

treat a special case when the level energy abruptly rises
from −∞ to a finite value Ed (a quantum quench), stays
constant for a long time, and then drops back to −∞. The
probability amplitude on the ground state after the first
quench is given by the projection of the discrete level on the
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ground state,
ffiffiffiffi
Z

p
. After a sufficient time the continuum

component is dephased, so on the second quench the bound
state is projected back on the discrete state, which gives
another factor

ffiffiffiffi
Z

p
. The resulting survival probability

(amplitude squared) is then p∞ ¼ Z2.
Returning to the dynamical problem, we eliminate ϕkðtÞ

from Eqs. (2), (3), and obtain an equation for ψdðtÞ,

i
dψdðtÞ
dt

¼EdðtÞψdðtÞþ
Z

t

−∞
~Σðt− t0Þψdðt0Þdt0; ð5Þ

where ~ΣðtÞ ¼ e5iπ=4θðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ20Δ=ð2πtÞ

p
is the Fourier trans-

form of ΣðEþ i0þÞ. Equation (5) should be solved with
the initial condition jψdðt → −∞Þj ¼ 1, and the quantity of
interest is p∞ ¼ jψdðt → þ∞Þj2.
Markovian regime.—Let us pass to the interaction

representation by writing ψdðtÞ ¼ ΨdðtÞe−iΦðtÞ, where
ΦðtÞ≡ R

t
0 Edðt0Þdt0. Equation (5) becomes

i
dΨdðtÞ
dt

¼
Z

t

−∞
~Σðt − t0ÞeiΦðtÞ−iΦðt0ÞΨdðt0Þdt0: ð6Þ

If eiΦðtÞ−iΦðt0Þ is quickly oscillating for t0 far from t, the
integral converges at short t − t0. If the time dependence of
Ψdðt0Þ is slow enough on the convergence time scale, one
can approximate Ψdðt0Þ ≈ ΨdðtÞ and take it out of the
integral (Markovian approximation). The resulting differ-
ential equation is straightforwardly integrated to give

p∞ ¼ exp

�
−2

Z
∞

0

dE
2π

ffiffiffiffiffiffiffiffi
γ20Δ
2E

r
jFðEÞj2

�
; ð7Þ

where FðEÞ≡ R
eiEt−iΦðtÞdt. Equation (1) can be obtained

from Eq. (7) by calculating FðEÞ in the stationary phase
approximation, or, equivalently, by approximating
ΦðtÞ − Φðt0Þ ≈ EdðtÞðt − t0Þ in Eq. (6), whose right-hand
side then becomes just Σ(EdðtÞ)ΨdðtÞ.
The Markovian character of the integral (6) is lost most

easily at times t ≈ t0 when Edðt0Þ ¼ 0. Approximating
ΦðtÞ≈Φðt0Þþ _Edðt0Þðt−t0Þ2=2þËdðt0Þðt−t0Þ3=3, where
_Ed ≡ dEd=dt, Ëd ≡ d2Ed=dt2, we obtain the condition
for the validity of the Markovian approximation as
maxfj _Edj3=2; jËdjg ≫ γ20Δ. If EdðtÞ < 0 always, the val-
idity is determined by the values EdðtmaxÞ, ËdðtmaxÞ at the
maximum: maxfjE3

dj; jËdjg ≫ γ20Δ.
Adiabatic regime.—The system is expected to be in

the adiabatic regime as long as jdE�=dtj ≪ E2� (as in the
standard LZ theory). If this holds at all times, the
probability 1 − p∞ for the particle to leave the ground
state is expected to be exponentially small. In this regime,
solving Eq. (5), either analytically and numerically, is not
an easy task. Indeed, Eq. (5) is deduced from the
Schrödinger equation in the diabatic basis, which is not
a natural one to describe the adiabatic regime [40]. Still, by
adapting the method of Ref. [13], an analytical solution can

be found for one specific case of the parabolic time
dependence EdðtÞ ¼ h − wt2, parametrized by the top
energy h and w > 0 (since ℏ ¼ 1 was assumed, w has
the dimensionality of energy cubed).
Namely, one goes to the Fourier space,

ψdðtÞ ¼
Z

dE
2π

e−iEt ~ψðEÞ; ð8Þ

where the integration is performed over the real axis. Since
t2 → −d2=dE2, Eq. (5) is transformed into

−w
d2 ~ψ
dE2

þ
�
Eþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ20Δ=ð−2EÞ

q �
~ψ ¼ h ~ψ ; ð9Þ

having the form of the stationary one-dimensional
Schrödinger equation with a complex potential (at
E > 0, the square root is positive imaginary after analytical
continuation in the upper complex half-plane). The solution
must decay exponentially at E → þ∞. At E → −∞, it has
the WKB form with some coefficients Cþ, C−:

~ψðE → −∞Þ ¼
X
�
C�

e�iSðEÞffiffiffiffiffiffiffiffiffiffiffi
S0ðEÞp ; S0 ≡ dS

dE
; ð10Þ

SðEÞ ¼
Z

E dεffiffiffiffi
w

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h − ε −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ20Δ=ð−2εÞ

qr
: ð11Þ

At t → �∞, the integral in Eq. (8) can be calculated in the
stationary phase approximation. For each t, only one of the
two terms in Eq. (10) produces a stationary point, deter-
mined by �t ¼ S0ðEÞ > 0. At jtj → ∞, the solution
Et ¼ h − wt2 → −∞, so one can indeed use the asymptotic
WKB expression (10). As a result,

ψdðt → �∞Þ ¼ e∓iπ=4

ffiffiffiffi
w
π

r
C�e−iEtt�iSðEtÞ; ð12Þ

which gives p∞ ¼ jCþ=C−j2. Thus, the survival proba-
bility p∞ of the dynamical problem (5) corresponds to the
inverse reflection coefficient in the scattering problem for
the Schrödinger equation (9). The positive imaginary part
of the potential ensures p∞ < 1.
The adiabatic effect is nontrivial when the bound state is

shallow, h ≫ ðγ20ΔÞ1=3. We also assume h3 ≫ w; other-
wise, the time spent by EdðtÞ in the continuum is too short
(the energy uncertainty exceeds h), and p∞ ≈ 1 can be
found from Eq. (7) with FðEÞ ¼ 2πw−1=3Ai½w−1=3ðE − hÞ�,
where AiðxÞ is the Airy function. When h3 ≫ w, γ20Δ
(below the red solid line in Fig. 2), the wave function ~ψðEÞ
can be found in the WKB approximation everywhere
except (i) the vicinity of the classical turning point
E ¼ h, where it can be treated in the standard way, and
(ii) near the singularity at E → 0 (see Supplemental
Material [41] for details). Then, one can identify two
limiting cases for matching the WKB solution at E → 0,
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governed by the parameter
ffiffiffiffiffiffiffiffi
wh3

p
=ðγ20ΔÞ. They are sepa-

rated by the dashed line in Fig. 2.
(i) In the adiabatic regime,

ffiffiffiffiffiffiffiffi
wh3

p
≫ γ20Δ, the particle

stays in the ground state up to an exponentially small
ejection probability,

p∞ ¼ 1 − exp

�
−
π

4

γ20Δffiffiffiffiffiffiffiffi
wh3

p
�
: ð13Þ

(ii) In the opposite limit, Cþ=C− is calculated to the first
order in

ffiffiffiffiffiffiffiffi
wh3

p
=ðγ20ΔÞ ≪ 1, which gives

p∞ ¼
������e−π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2
0
Δ=ð2wÞ

p
−ð4=3Þi

ffiffiffiffiffiffiffiffi
h3=w

p
þeiπ=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

4

γ20Δffiffiffiffiffiffiffiffi
wh3

p
s ������

2

: ð14Þ

The first term [of zero order in
ffiffiffiffiffiffiffiffi
wh3

p
=ðγ20ΔÞ] gives the

golden rule expression (1); indeed, the exponent is nothing
but ð1=2Þ R Γ(EdðtÞ)dt − i

R
EdðtÞdt for EdðtÞ ¼ h − wt2.

The second term is the first-order correction which must be
small compared to unity, but can still be larger than the
zero-order term. Remarkably, in the latter case it matches
the adiabatic expression (13) obtained in the opposite limit.
Discussion.—Equations (7), (13), and (14) represent the

main result of the present work. They agree with the
numerical solution of Eq. (5) (see the Supplemental
Material [41]). Although Eqs. (13) and (14) are obtained
for a specific dependenceEdðtÞ ¼ h − wt2, their relevance is
quite general, since any smooth EdðtÞ can be approximated
by a parabola near the maximum. The three expressions
have overlapping domains of validity: Eq. (7) with FðEÞ ¼
2πw−1=3Ai½w−1=3ðE − hÞ�matches the first term in Eq. (14),
while Eq. (13) matches the second. The only region not
covered by Eqs. (7), (13), and (14) is h3 ∼ w ∼ γ20Δ, shown
in Fig. 2 by the gray area.

Equation (14) has a two-path form, corresponding to the
two trajectories shown in Fig. 1. Because of the h- and
w-dependent phase of the first term, p∞ may exhibit
Stueckelberg interference oscillations as a function of h
or w. From the analogy with the standard two-level
problem, it is tempting to assume that the crossing of
the singularity at t0 ¼ −

ffiffiffiffiffiffiffiffiffi
h=w

p
can be viewed as a beam

splitter, when the particle “decides” which path to follow.
However, if this were the case, the system behavior would
be determined by EdðtÞ linearized around t0, i.e., by
_Edðt0Þ ¼ 2

ffiffiffiffiffiffi
wh

p
, while in Eq. (14) the parameter governing

the amplitude of the adiabatic path is
ffiffiffiffiffiffiffiffi
wh3

p
=ðγ20ΔÞ. This

latter parameter is nothing but the maximal value of
E−2� jdE�=dtj, which should be small to keep the adiaba-
ticity at all times. This maximal value is reached at
t ≈ t0=

ffiffiffi
3

p
, quite far from the crossing.

In any realistic superconducting device, the BCS singu-
larity in the DOS, which is the key ingredient of the
problem, is necessarily smeared on some energy
scale. If the smearing exceeds jE�j, the bound state enters
the continuum and decays, so the described effect is no
longer relevant. The smearing is often quantified by the
Dynes parameter [42,43], which gives the ratio of the
smearing scale to the gap Δ. For aluminum-based super-
conducting nanostructures, the Dynes parameter is typi-
cally 10−4–10−5, mostly due to microwave noise from the
environment [44], and can be made as low as 10−7 if special
efforts are made to ensure efficient microwave shielding
and quasiparticle relaxation [45]. Taking the values
γ0 ¼ 1 μeV,Δ ¼ 200 μeV [31], we obtain the main energy
scale responsible for the formation of the bound state
ðγ20Δ=2Þ1=3 ≈ 5 μeV, which exceeds the Dynes smearing
by several orders of magnitude. For a sinusoidal drive with
the amplitude 100 μeV and frequency 50 MHz [32], we
obtain w ≈ 2 μeV3. Then the level should be pushed by
h ∼ ½ðγ20Δ=2Þ2=w�1=3 ∼ a few μeV beyond the BCS singu-
larity to overcome the adiabatic blocking, and the period
of the Stueckelberg oscillations is h ∼ w1=3 ∼ 1 μeV, both
corresponding to quite measurable energy scales. To give a
noticeable amplitude of the oscillations, w should not be
too small compared to π2γ20Δ=2, so it is better to use a
device with sub-μeV γ0.
The experimental resolution is more likely to be limited

by the high-frequency noise component of the driven gate
voltage, which should favor electron ejection from the
bound state into the continuum. Thus, in experiment,
special care should be taken in order to reduce this extrinsic
noise. Theoretically, the effect of noise has been studied
for the standard two-level Landau-Zener problem [46–51];
inclusion of noise in the present theory along the same lines
is a subject for future work.
To conclude, I presented an extension of the Landau-

Zener problem to a continuous energy spectrum. The key
role is played by the singularity in the continuum DOS,

FIG. 2. Different regimes for the problem (5) with EdðtÞ ¼
h − wt2. The adibatic regime with 1 − p∞ ≪ 1 (hatched area
below the dashed line) occurs if the condition jdE�=dtj ≪ E2�
holds at all times. In the fast-drive regime (hatched area to the left
of the solid line), the time spent in the continuum is too short, so
that h is within the energy uncertainty and 1 − p∞ ≪ 1. In the
golden rule regime (white area between the dashed and the solid
line) p∞ ≪ 1. The gray area corresponds to h3 ∼ w ∼ γ20Δ with
p∞ ∼ 1.
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which is crossed by the driven discrete level. The Landau-
Zener physics is not washed out by the continuum because
of the quantum-mechanical level repulsion between the
discrete level and the DOS singularity, and even
Stueckelberg oscillations are present. The fundamental
physics, described here, is shown to be relevant for a
specific mesoscopic device, the hybrid quantum electron
turnstile, where the BCS singularity in the quasiparticle
DOS of superconducting electrodes may prevent electron
ejection from the discrete quantum dot level into the
electrode, thereby providing a fundamental limit on the
device operation.
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