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We demonstrate that the quantum mutual information (QMI) is a useful probe to study many-body
localization (MBL). First, we focus on the detection of a metal-insulator transition for two different models,
the noninteracting Aubry-André-Harper model and the spinless fermionic disordered Hubbard chain. We
find that the QMI in the localized phase decays exponentially with the distance between the regions traced
out, allowing us to define a correlation length, which converges to the localization length in the case of one
particle. Second, we show how the QMI can be used as a dynamical indicator to distinguish an Anderson
insulator phase from a MBL phase. By studying the spread of the QMI after a global quench from a random
product state, we show that the QMI does not spread in the Anderson insulator phase but grows
logarithmically in time in the MBL phase.
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Introduction.—In the early 1960s, Mott and Twose [1],
following Anderson’s work [2], conjectured that in one-
dimensional systems all single particle eigenstates are
localized for any amount of uncorrelated disorder. This
statement was given a mathematically rigorous proof by
Gol’dshtein, Molchanov, and Pastur [3] in the 1970s. Since
the localization of all single particle eigenstates implies no
transport, the resulting phase is a perfect insulator—the
Anderson insulator [4,5]. Afterwards, the problem of
including interaction was studied extensively [6–8], culmi-
nating in the seminal work of Basko, Aleiner, and Altshuler
[9], demonstrating the possible existence of a metal-
insulator transition at finite temperature in the presence
of both disorder and interaction. This result has brought
new emphasis and stimulated extensive research on the
resulting many-body localization (MBL). The presence of a
metal-insulator transition has been confirmed in several
works [10–19], which also underline the ergodicity break-
ing in the MBL phase. Moreover, new advancements of
controlled experimental techniques allowed the first evi-
dence of the existence of a localized phase and the presence
of a transition [20–23]. Nevertheless, one of the issues in
the experiments has been to distinguish an Anderson
insulator phase from a MBL phase. The growth of the
entanglement entropy after a global quench shows different
behavior between the two phases: in the Anderson insulator
phase it saturates and in the MBL phase it grows logarith-
mically [10,24,25]; however, measuring entanglement
entropy in an experimental setup is challenging due to
its nonlocal nature [26]. The difference between the
two phases in local observables after a quantum
quench and in spin echo was theoretically studied in
Refs. [19,27,28].
In this work we propose the quantummutual information

(QMI) between two small spatially separated regions as a
possible quantity that can, in principle, be used in an

experimental setup to detect the transition and to distin-
guish between an Anderson insulator and a MBL phase,
without the need to compute an extensive many-body
density matrix [29]. Several quantities have been borrowed
from quantum information theory to characterize the
extended and the localized phase as well as to detect the
transition [10,17,30–36]. The use of quantum information
theory tools (i.e., entanglement entropy, Rényi entropy,
concurrence, quantum mutual information) has been
shown to be a resounding resource to study quantum
critical points and different phases in strongly correlated
systems [29]. The mutual information measures the total
amount of classical and quantum correlations in the system
and has been successfully used to study phase transitions
[37–48]. We study the QMI between two sites in two
different models. The first one is the Aubry-André-
Harper (AAH) model [49], which is a one-dimensional
model (1D) of noninteracting fermions subject to a

FIG. 1. Qualitative behavior of the QMI in the two different
phases of the interacting disorder modelH (1) for a fixed disorder
configuration. t ¼ V ¼ W ¼ 1 (left) and t ¼ V ¼ 1 W ¼ 5
(right). The red dots represent the sites of the chain, and the
thickness of the blue bonds between sites fi; jg is proportional to
the magnitude of fIð½i�; ½j�Þg=fmaxi;jIð½i�; ½j�Þg averaged over
16 eigenstates in the middle of the spectrum.
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quasiperiodic potential, known to have a metal-insulator
transition. The second is the paradigmatic model of 1D
interacting spinless fermions subject to an uncorrelated
random potential, which is believed to have a MBL
transition [11,16,17]. The computation of the QMI between
two sites involves only two point correlation functions and
can thus, in principle, be measured in experiments
[26,50–52].
First we show that QMI for eigenstates in the middle of

the spectrum (i.e., “infinite temperature”) decays exponen-
tially with the distance between two sites in the localized
phase, but slower than exponential in the extended phase.
Using the QMI we define a correlation length which
diverges at the transition and in the limit of one particle
can be related to the localization length. Second, studying
the dynamics after a global quench, we show how the QMI
spreads differently in an Anderson insulator, a MBL phase,
and an extended phase.
Model.—We study the Hamiltonian

H ≔ −
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where c†jðcjÞ is the fermionic creation (annihilation)
operator at site j and nj ¼ c†jcj, fhjg are random fields,
t and V are, respectively, the hopping and the interaction
strength, L the system size, and N ¼ ðL=2Þ the number of
fermions. We consider two different cases that have a
metal-insulator transition. First, the noninteracting AAH
model, which is obtained fromH (2) with V ¼ 0, t ¼ 2 and
hj ¼ W cosð2πjϕþ αÞ, where ϕ ¼ ½ð1þ ffiffiffi

5
p Þ=2� is the

golden ratio and α is a random phase uniformly distributed
in ½0; 2π�. The AAH model is known to have a metal-
insulator transition atWc ¼ 2 (extended phase forW ≤ Wc
and localized phase for W > Wc). The localization length
close to the transition diverges as ξloc ∼ log−1ðW=2Þ [49].
Second, the spinless fermionic disordered Hubbard chain is
obtained by choosing t ¼ V ¼ 1, and fhjg independent
random variables uniformly distributed in ½−W;W�. This
Hubbard chain is believed to have a MBL transition at a
critical disorder strength Wc ¼ 3.5� 1 [11,16,17]
(extended for W < Wc and localized for W > Wc).
Quantum mutual information.—The quantum mutual

information for two spatial subsets of the system
A;B⊆½1; L� is defined as [29]

IðA;BÞ ≔ SðAÞ þ SðBÞ − SðA∪BÞ; ð2Þ

where SðAÞ is the von Neumann entropy
SðAÞ ¼ −Tr½ρA log ρA�, with ρA the reduced density matrix
of the subset A calculated using an eigenstate of H.
Figure 1 shows the typical behavior of Ið½i�; ½j�Þ for a

given disorder configuration in two different phases
(extended or localized) for all possible combination of
bonds fi; jg. The thickness of the lines that connect i ↔ j
represents the magnitude of fIð½i�; ½j�Þg=fmaxi;jIð½i�;
½j�Þg. In the extended phase (Fig. 1, left panel) the strongest
bonds are the first neighbors fi; iþ 1g but nevertheless all
the other combinations of bonds have almost the same
magnitude indicating that in the extended phase all sites are
entangled with each other. Note that in the thermodynamic
limit for ergodic infinite temperature states where a
random-matrix assumption is supposed to be valid, we
expect fIð½i�; ½j�Þg=fmaxi;jIð½i�; ½j�Þg to be a constant
independent on fi; jg. In contrast, in the localized phase
(Fig. 1, right panel) each site is mainly entangled with
neighboring sites and the QMI is almost zero for dis-
tant sites.
To quantify this behavior, we focus our study on

I j ¼ Ið½1�; ½jþ 1�Þ, from which we can define a correla-
tion length

ξ−1 ≔ − lim
j→∞

1

j
log

I j

I1
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j→∞

ξ−1j ; ð3Þ

where the overline stands for disorder average. We expect
that in the localized phase I j decays exponentially in j
(I j ∼ e−ðj=ξÞ); thus, ξ−1 will be nonzero. Instead, in the
extended phase we expect a decay of I j slower than
exponential, implying ξ−1 is zero in the thermodynamic
limit. The exponential decay of I j implies, via the Pinsker’s
inequality, that all two point correlation functions also
decay exponentially with the distance [31]. This definition
of a correlation length is related to the single particle
localization length ξloc, which is defined as [53]

ξ−1loc ≔ − lim
j→∞

1

j
log

jψ jj
jψ1j

; ð4Þ

with ψ j the single particle wave function evaluated at site j.
Computing I j for a system composed of one fermion
(N ¼ 1) and assuming ψ j is a decaying function of j,

logI j ∼ log jψ jj2 þ log

�
1 − log jψ jj2 þ log

jψ1j2
1 − jψ1j2

�
;

for large j, implies

ξ ∼ 2ξloc: ð5Þ

As a further measure of the spread of the QMI, we interpret
fpj ¼ ðI j=

P
mImÞg as the values of a discrete probability

distribution and take its variance
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X
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Since we expect I j to decay exponentially fast with j in the
localized phase, σ̄ should saturate with system size in this
phase. However, it is important to note that σ̄ can still
saturate for algebraically decaying I j (i.e., I j ∼ ½1=ðj3þηÞ�
for any η > 0); thus, this quantity can only be used to detect
a lower bound of the transition point.
Aubry-André-Harper model.—We start by benchmark-

ing our assumption on the behavior of the QMI in different
phases for the AAH model. We compute I j for this model
using a free fermion technique [54] for eigenstates of H
constructed as a Slater determinant taking random single
particle eigenstates, which implies an effective infinite
temperature ensemble. The two lower panels of Fig. 2
show ξ−1j as a function of j, for two different values ofW, in
the extended phase (W ¼ 1.5) and in the localized phase
(W ¼ 2.2). In the extended phase it decays to zero with a
saturation point which scales as the inverse of the system
size with a logarithmic correction due to the normalization
of the single particle wave functions ½ξ−1 ∼ ðlogL=LÞ� [55].
In the localized phase, ξ−1 saturates to a nonzero value,
leading to a finite correlation length. The left upper panel of
Fig. 2 shows ξ for different system sizes and different
disorder strengths. In the localized phase for a fixed system
size L, ξ was extrapolated from ξj by averaging over the
values of j where it saturates, and in the extended phase we
take ξ ¼ ξj¼L; furthermore, we checked that ξ does not
change if calculated from the center of the chain [55]. As
expected, in the extended phase ξ increases with system

size, while in the localized phase it saturates to a constant.
The right upper panel of Fig. 2 shows σ averaged over
disorder realizations for different disorder strengths and
different system sizes. For values of W greater than Wc, σ̄
converges to a finite value, which implies that all the
eigenstates are localized and have reached their maximum
extension. However, for values below Wc, σ̄ scales linearly
with system size (σ̄ ∼ L), with the consequence that
pj ∼ L−1, indicating that correlations are spread uniformly
at any distance.
Spinless Hubbard chain.—Having shown that the QMI

captures the salient features of the metal-insulator transition
in the AAH model, we now study I j for the interacting
problem that has a MBL transition. For this model, we
compute I j using exact diagonalization for eigenstates in
the middle of the spectrum. The lower panels of Fig. 3 show
ξ−1j for two different values ofW. In the expected extended
phase (W ¼ 1), it goes to zero with increasing j and in the
MBL phase (W ¼ 5) it becomes constant for large j,
indicating that the QMI decays exponentially with j. As
for the AAH model, for values of W where ξj becomes a
constant with respect to j we average over those sites, and
for values of W where ξj decays uniformly with j we take
ξ ¼ ξj¼L. The left panel of Fig. 3 shows the extrapolation
of the correlation length for different values of W and for
different L. We note that for values W < 4.0, ξ does not
converge for available system sizes, but it increases with L,
giving an indication of an extended phase and thus of a
transition. As expected, ξ is a monotonically decreasing

FIG. 2. (AAH model) The upper left panel shows the locali-
zation length ξ for different system sizes as a function of disorder
strength W. The dashed line at Wc ¼ 2 represents the known
transition point between the extended and localized states [49].
For values below Wc, ξ increases with system size, while
for values above Wc it saturates. The right upper panel shows
σ̄ for different system sizes as a function of disorder strength W;
for values of W below Wc σ̄ grows with system size while for
values above Wc it saturates. The lower panels show ξ−1j in two
different phases: for W ¼ 1.5 in the extended phase ξ−1j goes to
zero as a function of j, while forW ¼ 2.2 in the localized phase it
saturates to a positive value implying a finite correlation length ξ.

FIG. 3. (Spinless Hubbard chain) The top left panel shows the
localization length ξ for different system sizes as a function of
disorder strength W. The top right panel shows σ̄ for different
system sizes as a function of disorder strength W, for values
W < 4 it grows with system size, while for larger values it
saturates. The vertical dashed line atWc ¼ 3.5 is the value for the
expected transition [11,17]. The bottom lower panels show ξ−1j in
the two different phases. For W ¼ 1 in the extended phase, ξ−1j
goes to zero as a function of j, forW > 4 in the localized phase it
starts to saturate to a positive value implying a finite correlation
length.
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function of W, implying stronger localization for larger
disorder. We also detect the extended and localized phases
by studying σ̄, as shown in the right upper panel of Fig. 3.
Its behavior is similar to the case of the AAH model. For
values W ≤ 4, σ̄ grows with L (σ̄ ∼ L) [55], implying
pj ∼ L−1, so there is equal probability of finding correla-
tion at any distance. For W > 4.0, σ̄ saturates with L
indicating the presence of the two different phases.
Unbounded spread of QMI.—We now show how I j can

be used to distinguish between an Anderson insulator phase
and an MBL phase. We perform a global quench from a
random product state ðQN

s¼1 c
†
is
j0iÞ and compute I j as a

function of time. We study the following quantity,

hhX2ii ≔
X

j

j2I jðtÞ −
�X

j
jI jðtÞ

�
2

: ð7Þ

This quantity allows us to detect the spread of information
under time evolution. At t ¼ 0 the initial product state has
no entanglement and hhX2ii is zero. With the increase of
time its value increases. Figure 4 shows hhX2ii as a
function of time t averaged over disorder and over random
product states in the regime of strong localization W ¼ 6.
For V ¼ 0 (Anderson model) it saturates at a time of the
order 1 [∼ðhopping strengthÞ−1] as one would expect in an
Anderson insulator phase [55]. In the MBL phase (V ≠ 0)
in contrast, it grows logarithmically, hhX2ii ∼ logðtÞ. The
logarithmic growth can be understood from the mechanism
of dephasing induced by interaction [25], in which the time
needed to entangle a separated portion of the system grows
exponentially with their distance. We tested this by calcu-
lating the minimum time such that I jðtÞ starts to be bigger
than some fixed threshold,

TminðjÞ ≔ min ftjI jðtÞ ≥ 10−5g; ð8Þ

and we plot it as a function of j in Fig. 5. In the extended
phase (Fig. 5, left panel) Tmin grows algebraically with

distance j, while in the MBL phase (Fig. 5, right panel) the
time to entangle two separated portions of the system grows
exponentially with their distance after an intermediate
regime.
Conclusions.—In this work we studied the QMI in

fermionic systems having a metal-insulator transition.
First, we benchmarked our main conjectures on the scaling
of the QMI as a function of the distance of two sites in the
AAH model. Second, we studied it in an interacting model
having a MBL transition. The QMI decays exponentially
with the distance in the localized phase and slower than
exponential in the extended phase. This allowed us to
define a correlation length ξ, which is finite in the localized
phase and diverging in the extended phase. This correlation
length recovers the single particle localization length ξloc if
the system is composed of only a single fermion.
Furthermore, we defined the quantity σ, which can be seen
as the variance of an appropriate probability distribution
defined using the quantum mutual information. In both
models, this quantity saturates to a finite value in the
localized phase and diverges with system size in the
extended phase. Finally, we studied the nonequilibrium
properties of the MBL system by performing a global
quench from a random product state and following the time
evolution of the mutual information. We showed that the
spread of the QMI with time can be used as a dynamical
indicator to distinguish an Anderson insulator phase from a
MBL phase. In the Anderson phase it saturates with system
size, while in the interacting case it grows logarithmically.
With our study we propose the QMI between two sites as a
possible quantity which, in principle, can be measured in
experiments, to detect the MBL transition, and moreover to
distinguish between an Anderson insulator phase and an
interacting localized phase (MBL).
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FIG. 4. hhX2ii for different system sizes for W ¼ 6, and for
V ¼ 0 (noninteracting). For V ¼ 0 hhX2ii saturates at time of the
order one and with system size. For V ≠ 0, hhX2ii ∼ logðtÞ.

FIG. 5. Tmin for different system size and in two different
phases. For W ¼ 1.5 extended phase, it grows algebraically. In
the localized phase (W ¼ 6) the time to entangled two separated
region of the systems grows exponentially with their distance.
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