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We analyze the transition from convective to absolute dynamical instabilities in a nonlinear optical
system forming patterns, i.e., a photorefractive crystal in a single feedback configuration. We demonstrate
that the convective regime is directly related to the bistability area in which the homogeneous steady state
coexists with a pattern solution. Outside this domain, the system exhibits either a homogeneous steady state
or an absolute dynamical regime. We evidence that the bistability area can be greatly increased by adjusting
the mirror tilt angle and/or by applying an external background illumination on the photorefractive crystal.
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A common laser beam propagating through a nonlinear
medium may become unstable against modulation insta-
bility resulting in the appearance of correlated satellite
beams called pattern [1]. For its potential application in
optical memories, spontaneous pattern formation has been
studied in a large variety of nonlinear optical systems
including optical ring or Fabry-Perot resonators filled with
active or passive medium [2] and single feedback configu-
rations using liquid crystals [3], atomic vapors [4,5], and
photorefractive crystals [6,7].
One of the generic features of the previous pattern-

forming systems is the subcritical bifurcation from which
the pattern may originate. The bifurcation being subcritical,
the pattern branch coexists with the homogeneous solution
within a given range of the system parameters [8]. Among
the different parameters, Odoulov et al. reported that the
bistability can be controlled by modifying the distance
between the mirror and the photorefractive crystal in a
single feedback experiment [9]. In optical resonators, the
cavity detuning corresponding to a mistuning between the
driving wavelength and the resonance peak of the cavity
has been used to adjust the bistable area [10].
Finally, it is worth noting that the bistability mechanism

is possibly related to observation of localized structures that
are connecting fronts between pattern and homogeneous
solutions [11]. It consists of localized intensity peaks in an
otherwise homogenous background that can be switched on
and off at will. Therefore, being able to control the range of
parameters where such localized structures may exist is
crucial for their applications in all-optical information
processing [12,13].
Recent preliminary work from our group in an optical

system composed of a bulk photorefractive crystal sub-
jected to a single optical feedback [14] has shown the
possibility to increase the bistability between pattern and
homogeneous solutions by playing with the misalignment
of the feedback mirror. The bistability area becomes larger
with respect to larger mirror misalignments. Reference [14]

left, however, unanswered the origin of this observation and
the underlying physical mechanisms. In this Letter, we
demonstrate the role of the convection in the bifurcation
scenario. We show the interplay between drift induced
instabilities and bistability. Consequently, the bistability
can be controlled and greatly enhanced by an intentional
misalignment of the mirror, hence inducing the transition
towards convective or even absolute dynamical instabil-
ities. We further report on the influence of an external
background illumination applied to our photorefractive
crystal. Importantly, the system described by our model
is fairly generic as it represents two beams counterpropa-
gating in a saturable medium. Therefore, it is worth
mentioning that our numerical and experimental observa-
tions in photorefractive materials could be of great interest
in other broad area systems (VCSEL’s, liquid crystal,
Kerr media).
Our experimental setup is sketched in Fig. 1 and is

similar to Refs. [14,15]. The system is aligned such that it
induces a photorefractive two-wave mixing in a reflection-
grating geometry. A p-polarized 532 nm laser beam is
focused to a 300-μm diameter inside a cobalt-doped barium
titanate crystal (BaTiO3). The lens L1 fixes the input beam
size. The feedback mirror can be precisely moved longi-
tudinally and transversally to create an advectionlike effect
giving rise to a transverse shift (H) between the forward (F)
and the backward beam (B) (Fig. 1). Transverse patterns
arising onto the backward beam trajectory are monitored in
near- and far-field (Fourier transformed) thanks to the lens
L2 and different beam splitters (BS). It is worth noting that
the input intensity of the pump laser beammodifies the gain
of the (nonlocal) reflection grating arising in the crystal
due to the nonlinear two-wave mixing process [16]. Thus,
by keeping the input beam diameter constant and only by
changing the power of the laser, we can adjust carefully the
nonlinear photorefractive coupling strength. This action
can be enhanced by the presence of an external background
illumination similar to Ref. [9]. Such an illumination can be
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switched on or off (Fig. 1) and is used to ensure a
dependence between the photorefractive gain and the probe
beam intensity, i.e., to avoid the saturation of the two-wave
mixing gain for high input powers.
A simplified model describing our system has been

suggested by Sandfuch et al. [17]. The equations are
written

∂F
∂z þ iDΔ⊥F ¼ −QB; ð1Þ

−
∂B
∂z þ iDΔ⊥B ¼ Q�F; ð2Þ

τ
∂Q
∂t þQ ¼ γ

FB�

jFj2 þ jBj2 þ Id
; ð3Þ

where F and B are the forward and backward beams,
respectively. D ¼ lλ0=ð4πn0w2

0Þ corresponds to the diffrac-
tion coefficient, where n0 is the homogeneous refractive
index, λ0 is the laser wavelength in vacuum, l is the length
of the crystal, and w0 the beam waist. z is the propagation
coordinate scaled by l. Δ⊥ is the transverse Laplacian
scaled by w0. Q corresponds to the complex amplitude of
the photorefractive reflection grating. τ is the relaxation
time related to the photorefractive crystal used. γ represents
the photorefractive coupling strength and Id the back-
ground illumination intensity. Similarly to Ref. [18], the
boundary condition modeling the feedback and describing
the relation between the backward and forward beams at
the crystal side facing the mirror is defined as

Bðz ¼ lÞ ¼ −
ffiffiffiffi

R
p

e2ikx tanðβÞF−1fe2ikLF ½Fðz ¼ lÞ�g; ð4Þ

where F is the 2D-transverse Fourrier transform, R the
mirror reflectivity (R ¼ 1), and β the mirror tilt angle. L is

the distance between the mirror and the crystal and k is
wave vector. As in the experiment, we inject a Gaussian
beam in the ðx; yÞ plane. Numerical simulations are then
performed on Eqs. (1)–(3) using a conventional split-step
Fourier beam propagation method.
First, the two counterpropagating beams are aligned [no

advection effect, H ¼ 0, Figs. 2(a),2(b)]. The additional
illumination (Fig. 1) is switched off. We work in a range of
input powers for which the gain is not saturated. We fix the
longitudinal position of the mirror at 1 mm from the back
face of the crystal (L ¼ 1 mm). For low values of the input
power, the system exhibits a homogeneous steady state
[Figs. 2(a),2(b)]. By increasing the input power, the pump
beam becomes unstable against modulational instability
at a specific value of the input power PTh. Above PTh,
modulational instability leads to the formation of subcriti-
cal honeycomblike patterns (H− hexagons in the different
insets in Fig. 2). Such a subcritical bifurcation scenario
leads to a given range of input powers where it is therefore
possible to observe a coexistence between the homo-
geneous steady state and the hexagonal pattern (colored
areas in Fig. 2). Similarly to Ref. [9], the hysteresis loop
becomes narrower and the threshold power PTh shifts
towards larger value when increasing the distance between
the feedback mirror and the crystal (not shown here). This
is mainly due to the diffraction length in free space between
the mirror and the crystal that tends to spread the backward
beam and therefore reduces the gain of the two-wave
mixing process: the larger the mirror-crystal distance is, the
smaller the spatial overlap between the reflected side lobes
and the pumped area inside the crystal becomes, therefore
increasing the losses. Consequently, for a large crystal-
mirror distance, starting from a pattern solution and
decreasing the intensity leads quickly to the collapse of
the pattern state to the homogeneous solution. Neither the
resulting power, nor an eventual underlying dynamics can
sustain the upper branch of the hysteresis anymore.
Keeping the mirror-crystal distance constant, we now

introduce a weak advectionlike effect by misaligning the
feedback mirror [towards the left in Figs. 2(c),2(d)].
The previous stationnary hexagonal pattern is then driven
into a drifting dynamics with possibly other geometries.
Although different mirror tilt angle ranges give rise to a
large variety of pattern geometries [15], we limit our study
to the case where the misalignment H is inferior to 10 μm,
providing a preferential hexagonal pattern geometry.
Figures 2(c)–2(f) show the dependence of the power in the

hexagonal spots versus input beam powers for two different
mirror tilts corresponding to a transverse shift H ¼ 4 and
H ¼ 8 μm, respectively. We observe (i) a homogeneous
steady state for low values of the input power, and (ii) the
modulational instability threshold (PTh) increases as the
mirror tilt is increased, i.e., from 0.65 mW for no mirror tilt
[Fig. 2(a)] to 1 mW for a medium mirror tilt [Fig. 2(c)] and
to 1.45 mW for a strong mirror tilt [Fig. 2(e)]. As explained

FIG. 1. Schematic of our photorefractive single feedback
system. The forward (F) and backward (B) beams are responsible
for the pattern formation. Lens (L2) and different beam splitters
(BS) are used to monitor the transverse patterns arising onto the
backward beam trajectory. L: distance between the mirror and
the crystal, β: mirror tilt angle, H ¼ L: sinðβÞ: transverse shift
(in μm).
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earlier for the diffraction path between the feedback mirror
and the crystal, the spatial overlap between the reflected side
lobes and the pumped area inside the crystal becomes also
narrower when we increase the transverse shift between the
two counterpropagating beams, thus reducing the photo-
refractive gain. More power is therefore needed to compen-
sate for the losses. In spite of the losses, surprinsingly, (iii) the
bistability range increases as themirror tilt is increased: from
0.1 mW for H ¼ 0 μm to 0.2 mW for H ¼ 4 μm, and to
0.4 mW for H ¼ 8 μm (similar behaviors with correspond-
ing values of the photorefractive coupling strength γl are
shown on the numerical simulations [Figs. 2(b),2(d),2(f)].
Such a counterintuitive result originates from the advection-
like effect governed by a peculiar dynamics. This latter may
become convective or absolute depending on the input power
[15]. Basically, in the so-called convective regime, a pertur-
bation growing on a homogeneous state is simultaneously
advected away so that the system returns to the initial
homogeneous solution. Theoretically, no pattern arises in
this regime. In contrast, in the absolute regime, a disturbance
growing locally competes with the drift so that the system
reaches a pattern state. The convective regime, where no
pattern is expected, can still exhibit patterns if noise is present
in the system, which is always the case experimentally.
Consequently, macroscopic patterns called noise-sustained
structures appear as a result of the amplification in prefer-
ential directions of the perturbations produced by the micro-
scopic noise [15,19].
Although experimentally the two regimes lead to pattern

formation, in order to distinguish them, one has to look
for their specific signatures [15,19,20]. One of the most
significant is the area of the near-field intensity pattern

inside the available space determined by the size of the
pumping area (i.e., the size of the input beam, 300-μm
diameter in our experiment). Basically, noise-sustained
patterns do not occupy all the modulated space but are
located in the area closest to the edge of the outgoing flow
(towards the left in our configuration), in contrast to
dynamics-sustained patterns (absolute) which invade all
the space (see the corresponding pictures for high and
medium powers [Figs. 2(c),2(e)]. Finally, the analysis of
the size of the near-field patterns enable us to identify the
thresholds of the transition from convective to absolute
instabilities.
Figure 3 shows the evolution of the pattern size with

input power for a strong advection H ¼ 8 μm [insets in
Figs. 2(e),2(f)]. We chose to analyze the configuration
in Figs. 2(e),(f) since it displays the largest bistability
range. For low input powers (below 1.3 mW), the output
beam shows an homogeneous stationary state. Close to
the modulational instability threshold (between 1.3 and
1.4 mW) erratic hexagons appear randomly in time and
space with short time duration (“noisy precursor” in Fig. 3).
Such a regime is known to be the noisy precursor of the
absolute pattern that will grow for higher input powers [20].
In this regime, microscopic noise excites all the possible
transverse wave vectors and the newly generated advected
pattern has no relation with the one already formed.
Regarding the space occupation of the emerging pattern,
it occupies in average 90% of the available space. When the
input power is still increased between 1.45 and 1.6 mW,
drifting hexagons are always present close to the edge of
the outgoing flow (see the orange dashed lines compare
to the orange solid lines representing the total available

(a) (c) (e)

(b) (d) (f)

FIG. 2. Normalized intensity of the hexagons as a function of the input power obtained experimentally (EXP.) in (a),(c), and (e) and
numerically (NUM.) in (b),(d),(f) as function of the photorefractive coupling strength γ. Crosses and circles are obtained when
increasing and decreasing the input power (and corresponding γ), respectively. Three cases are studied: no advection effect (a),(b), weak
(c),(d) and strong advection (e),(f) corresponding to a drift of the otherwise stable pattern towards the left on the different pictures. The
areas between the dashed lines correspond to the bistability regimes where the homogeneous solution coexists with the hexagonal
pattern state. Insets correspond to experimental near-field intensity patterns obtained for different input powers.
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space). This localized structure occupies roughly 50% of
the pumping area. The perturbations are amplified and
advected away but reappear recursively. We are in the
presence of convective patterns whose dynamics are
sustained by noise. For higher input intensities (above
1.6 mW), the previous convective pattern invades all the
available space (Fig. 3, absolute area). Such a phenomenon
is connected to a regime where the pattern is sustained by
the system dynamics. For decreasing values of the pump
power, in the absolute area, the pattern follows the same
behavior. The switching point down to the convective area
is almost the same (P ¼ 1.55 mW) but the pattern main-
tains its convective dynamics down to 1 mW. The total
convective region is therefore directly linked to the bist-
ability area and vice versa. It is worth noting that inves-
tigations have been done for other advection parameters
and give all similar conclusions.
Finally, we suggest studying the effect of an incoherent

background illumination onto the bistability area (Fig. 4).
Our starting point corresponds to the largest advectionlike
effect [H ¼ 8 μm in Figs. 2(e),2(f)]. Similarly to the
previous scenario, we show the same measurements as
in Figs. 2(e),2(f), but with the background illumination
switched on. The intensity of this additional illumination
is chosen such as the associated photoconductivities from
the pump laser beam (F) and from the incoherent light
are comparable. Such an illumination tends to erase the
reflection gratings inside the crystal. The losses become
higher and the consequence is visible through the shift of
the modulational instability threshold towards a higher
value (PTh ¼ 4.05 mW compared to 1.45 mW without
background illumination; see the corresponding values of
γl for numerical simulations). Most importantly, the

bistability and corresponding convective region (not shown
here but similar to Fig. 3) become larger. Additional
thermal effects due to the higher intensity ranges in this
configuration generate many other transverse instabilities
in the system. Those latter act as a new source of noise that
tends to sustain the convective dynamics in a larger
intensity scale.
To summarize, in comparison with the classical situation

[Figs. 2(a),2(b)] where no background illumination is
applied to the PR crystal without any advectionlike effect,
we have been able to obtain a 9 times larger bistability region
(Fig. 4). We have demonstrated that the bistable regime is
directly linked to the convective one where patterns are
sustained by noise in the system. Increasing the background
illumination and/or the advectionlike effect shifts the mod-
ulational instability threshold towards higher intensities. The
diffusion associated to the largest intensities acts as a new
source of noise that sustains the convective dynamics in a
larger intensity scale and, consequently, the bistable area. It is
worth mentioning that such observations are interesting in
the framework of cavity solitons. One of the crucial mech-
anisms for the existence of such localized intensity peaks is
the presence of an optical bistability between a stable Turing
pattern and a homogeneous steady state. Therefore, being
able to control the range of parameters where cavity solitons
may exist is the key for their generation in nonlinear optical
systems. Moreover, our results bring new perspectives into
how a nonlinear system behaves in the presence of an
advectionlike instability.
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FIG. 3. Evolution of near-field pattern size versus the pump
power for a strong advectionlike effect [Figs. 2(e),(f)]. Orange
dashed lines correspond to the pattern occupation inside the total
available space represented by the solid orange lines. The black
dotted lines represent the different thresholds for convective and
absolute regimes. Crosses and circles are obtained when increas-
ing and decreasing the input power, respectively.
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FIG. 4. Plots similar to Figs. 2(e),2(f) with a background
illumination switched on. (a) Experimental results and (b) numeri-
cal simulation.
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