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We discuss how one can realize a photonic device that combines synthetic dimensions and synthetic
magnetic fields with spatially local interactions. Using an array of ring cavities, the angular coordinate
around each cavity spans the synthetic dimension. The synthetic magnetic field arises as the intercavity
photon hopping is associated with a change of angular momentum. Photon-photon interactions are local in
the periodic angular coordinate around each cavity. Experimentally observable consequences of the
synthetic magnetic field and of the local interactions are pointed out.
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Dimensionality plays a key role in modern physics [1].
From the perspective of condensed matter physics, systems
of dimensions 4 or higher were long considered relatively
featureless because their properties are typically well
captured by mean-field theories. This expectation was
overturned by recent developments in the study of topo-
logical phases of matter, which hinted at rich novel physics
in higher dimensional systems [2]. In particular, analogues
of the quantum Hall effect are predicted for any even
dimensions, with new topological invariants appearing
from four dimensions [3].
While such predictions are clearly unaccessible in tradi-

tional condensed matter systems, a novel approach of
simulating higher-dimensional topological models using
“synthetic dimensions” has very recently moved its first
steps. The idea was first proposed in ultracold atomic gases,
where the discrete internal spin degrees of freedom of the
atoms are regarded as an extra synthetic dimension along
which tunneling occurs via suitably designed Raman
transitions [4–7]. Synthetic dimensions have also been
considered for other systems such as different electronic
states of an atom [8], atoms in a harmonic potential [9], or
light in arrays of multimode cavities [10–13].
Such developments in synthetic dimensions open a

prospect of exploring physics in four dimensions using
physically three-dimensional lattices. As first steps, pro-
posals to observe the quantized magnetoelectric conduct-
ance of the four-dimensional integer quantum Hall effect
have been put forward [12,14,15]. Going beyond to explore
fractional quantum Hall states is however facing great
difficulties because of the very long range nature of
interactions along the synthetic dimension in both atomic
and photonic systems [16–18]. It is therefore of great
interest to find schemes to realize synthetic dimensions
where interactions are short ranged.
To overcome this difficulty, we propose a general

framework to realize a photonic lattice that combines
synthetic dimensions and synthetic magnetic fields with
local interactions. Our proposal therefore has the potential

of hosting strongly correlated topologically nontrivial states
of matter. We consider an array of ring-shaped photonic
cavities. Differently from previous proposals [11–13]
where the focus was on the mode index w, the synthetic
dimension is here spanned by the geometrical angular
coordinate θ around the disk that is conjugate to w. As
higher dimensional cases do not display any conceptual
difference, we will present our idea on the intuitively most
transparent case of a one-dimensional chain of cavities
along the x direction. In this way, an effectively two-
dimensional model in the x-θ plane is obtained, and a
synthetic magnetic field naturally appears if the resonators
are designed in a way that hopping along the x direction is
accompanied by a change in w. The spatially local photon-
photon interactions within a cavity lead to the desired local
interaction along both x and θ. We confirm the validity of
our framework by numerical simulations of the cyclotron
motion and the expansion dynamics of a suitably initialized
wave packet.
The model Hamiltonian.—Our target is to realize a

Hamiltonian of the form

H ¼
X
x

Z
2π

0

dθ

�
D
2
fi∇θb

†
xðθÞgf−i∇θbxðθÞg

− Jfeicθb†xþ1ðθÞbxðθÞ þ H:c:g

þ U
2
b†xðθÞb†xðθÞbxðθÞbxðθÞ

�
; ð1Þ

where bxðθÞ is an annihilation operator of a photon in a ring
cavity at site x with θ being the angular variable around a
ring cavity. The site index x is discrete, whereas the angular
variable θ is continuous, taking a value 0 ≤ θ < 2π with
periodic boundary conditions bxð2πÞ ¼ bxð0Þ. The first
term in Eq. (1) is the kinetic energy term with an effective
mass 1=D along the θ direction. The second term describes
hoppings between adjacent cavities of (real) amplitude J
and a θ-dependent hopping phase equal to cθ as one hops
from sites ðx; θÞ to ðxþ 1; θÞ. The hopping phase
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represents an effective magnetic field of the strength
Beff ¼ −c in the x-θ plane. Because of the periodicity in
the θ direction, the constant c must be an integer. This
Hamiltonian describes the motion of a particle on a cylinder
with a tight periodic potential along the axial direction, as
schematically described in Fig. 1(a). Spatially local photon-
photon interactions in the x-θ plane are described by the
last term.
In order to see how the Hamiltonian (1) can be physically

realized, we Fourier transform the bxðθÞ operators to the
conjugate angular momentum w space:

bx;w ≡
ffiffiffiffiffiffi
1

2π

r Z
2π

0

dθbxðθÞe−iðw−w0Þθ; ð2Þ

the reference angular momentum w0 is introduced here for
later convenience. In terms of the transformed bx;w oper-
ators, the Hamiltonian (1) is rewritten in the form

H ¼
X
x;w

D
2
ðw − w0Þ2b†x;wbx;w − J

X
x;w

ðb†xþ1;wþcbx;w þ H:c:Þ

þ U
4π

X
x

X
w1þw2¼w3þw4

b†x;w1
b†x;w2

bx;w3
bx;w4

: ð3Þ

The hopping between adjacent cavities, described by the
second term, is accompanied by a change of c units of
angular momentum w. These hopping processes in the x-w
plane are schematically described in Fig. 1(b). The last term
represents the interphoton interaction, which conserves the
total angular momentum.
Physical implementation.—While our proposal can be

applied to a variety of photonic systems where photons
follow a circular path inside a cavity, such as exciton-
polariton micropillars [19], circuit QED setups [20], or
surface plasmons [21], in the following we focus on a
specific implementation scheme based on an array of
silicon microring resonators [22].
We propose to design microring resonator cavities in a

way that their mode frequencies depend on x and w as

Ωx;w ¼ Ω0 þΩFSRðw − w0 − xcÞ þDðw − w0Þ2=2; ð4Þ

where Ω0 is the frequency of a reference mode w0 ≫ 1 in
the central x ¼ 0 cavity and we restrict our attention to
w > 0modes. The free spectral range of the cavities isΩFSR
and the quadratic dispersion termD accounts for deviations
from perfect mode equispacing. In particular, the modes of
neighboring cavities are assumed to be shifted by −cΩFSR,
so that Ωx;w ≈Ωxþ1;wþc. The condition (4) can be obtained
by careful fabrication of cavities adjusting available param-
eters such as the radius and the shape of the section of
cavities [23].
If the hopping is much smaller than the free spectral

range J ≪ ΩFSR, since Ωx;w ≈ Ωxþ1;wþc, the only effective
tunneling processes are the ones associated with an angular
momentum change by c. Assuming that the relevant
amplitude does not significantly depend on x or on w,
the noninteracting tight-binding Hamiltonian is

~H0 ¼
X
x;w

Ωx;wa
†
x;wax;w − J

X
x;w

ða†xþ1;wþcax;w þ H:c:Þ; ð5Þ

where ax;w is the annihilation operator of a photon with the
angular momentum w at site x. We assume for simplicity
J > 0, but our results are robust with respect to the
w-dependent hopping phases that appear in some imple-
mentations (see the Supplemental Material for further
discussion [24]). Moving to a rotating frame by
bx;w ≡ ax;w expfi½Ω0 þ ΩFSRðw − w0 − xcÞ�tg, one recov-
ers the noninteracting part of the desired Hamiltonian (3).
Transformation to the bx;w operators corresponds to moving
to a frame that rotates at ΩFSR. The origin of the synthetic
magnetic field can be understood by noting that in terms of
the rescaled ~w≡ w − w0 − xc, which does not change
during tunneling, the mode frequency (4) recovers that
of a free particle in a magnetic field with the Landau gauge
with a boost in the synthetic direction, Ωx; ~w ¼ Ω0þ
ΩFSR ~wþD=2ð ~wþ xcÞ2, where ~w is analogous to momen-
tum in the synthetic dimension.
The photons in a cavity can interact via the nonlinearity

of the underlying medium. The electric field Eðr; tÞ in a
single cavity can be written as

Eðr; tÞ ¼
X
w

½EwðrÞaw þ E�
wðrÞa†w�; ð6Þ

where, assuming a circular form for the cavity and
restricting to radially polarized modes, the electric index
profile EwðrÞ of the mode w in the cylindrical coordinates
ðr;ϕ; zÞ has the form EwðrÞ ¼ RwðrÞZwðzÞeiwϕêr where êr
is the unit vector in the radial direction. Assuming that the
χð3Þ nonlinearity is local in space and sufficiently fast in
time, the photon-photon interactions are described by the
Hamiltonian

FIG. 1. Schematic illustration of hoppings (a) in the x-θ plane
and (b) in the x-w plane when c ¼ 1.
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Hint ¼ ~U
Z

d3rjEðr; tÞj4: ð7Þ

Inserting Eq. (6) into Eq. (7), one notices that only angular
momentum conserving terms survive after the integration
over r. Under the rotating wave approximation, we ignore
terms involving unequal numbers of creation and annihi-
lation operators. Grouping all numerical factors into the
coefficient U, one obtains the following interaction
Hamiltonian in the rotating basis

Hint ¼
U
4π

X
w1þw2¼w3þw4

b†w1
b†w2

bw3
bw4

; ð8Þ

which is straightforwardly extended to the many-cavity
case described in our target Hamiltonian (3).
The local interaction in θ requires that the nonlinearity be

sufficiently fast on the time scale of ΩFSR. If the non-
linearity is slow, each term in Eq. (8) is multiplied by a
coefficient that is a function of ΩFSRðw1 − w4Þ, which
decays on the scale of the inverse response time of the
medium. This condition can be physically understood by
noting that a photon wave packet quickly rotates around the
ring cavity at an angular speed ΩFSR.
Single-particle physics.—We now turn our attention to

the single-particle (noninteracting) physics predicted by the
model Hamiltonian (1). This Hamiltonian describes a
quantum particle subject to a magnetic field and moving
in a hybrid geometry with one discrete and one continuous
dimension. A charged particle in a magnetic field with two
continuous dimensions is a text-book problem leading to
the highly degenerate Landau levels [25]. On the other
hand, the same problem in two discrete dimensions is
known as the Harper-Hofstadter model and leads to the
energy spectrum known as the Hofstadter butterfly [26].
The configuration considered here lies in between the two
cases of the Landau levels and the Hofstadter butterfly and
is closely related to Kane et al.’s coupled quantum wire
construction [27].
When the system is periodic in the x direction, the

Hamiltonian (1) is translationally invariant in the x direc-
tion, so one can take advantage of the conserved momen-
tum kx and express bxðθÞ ¼ ð1= ffiffiffiffiffiffi

Nx
p ÞPkxe

ikxxbðkx; θÞ,
where Nx is the number of cavities along x. The problem
is then reduced to the one-dimensional Hamiltonian

H0 ¼
X
kx

Z
2π

0

dθ

�
D
2

�
i∇θb†ðkx; θÞ

��
−i∇θbxðkx; θÞ

�

−2J cos ðcθ − kxÞb†ðkx; θÞbðkx; θÞ
�

ð9Þ

describing the mass of 1=D particles moving in a cosine-
shaped potential with periodic boundary condi-
tions θ þ 2π ¼ θ. As the kx dependence in the potential

cosðcθ − kxÞ can be absorbed into the shift of the origin of
the periodic coordinate θ, the one-particle spectrum does
not depend on kx. This implies that each state is Nx-fold
degenerate, which is reminiscent of the Landau levels.
In the limit of large D, the harmonic trapping in the w

direction dominates over the hopping along x, and the
spectrum becomes n2D=2, where n is an integer. In the
opposite D ≪ J limit, when c ≠ 0, the cosine potential
−2J cosðcθÞ is large compared to the kinetic energy;
therefore, the low-lying energy levels of the system can
be obtained with a quadratic approximation of the cosine
potential around each of its jcj minima. As in a harmonic
oscillator, the energy levels are then approximately equi-
spaced, En ¼ −2J þ ffiffiffiffiffiffiffiffiffiffiffiffi

2D=J
p ðnþ 1=2ÞcJ, where n ≥ 0 is

a non-negative integer and, for a given value of kx, each of
them is approximately jcj-fold degenerate. The splitting
due to tunneling between minima of the cosine potential is
exponentially small in the D → 0 limit. In Fig. 2, we plot
the first several single particle energy levels as one variesD
for c ¼ 1 and 2: a very good agreement is found at small D
between the asymptotic analytical expression (dotted lines)
and the full spectrum (solid lines).
Because of its intrinsic periodicity in θ, our system does

not have any edge in θ. Open boundary conditions can be
chosen along x, which lead to chiral edge states, whose
properties are similar to the Landau level problem; more
details are discussed in the Supplemental Material [24]. In
what follows, we focus our attention on experimentally
observable magnetic and interaction effects in the bulk.
Cyclotron orbits.—As a first example, we investigate the

semiclassical cyclotron orbits of a Gaussian wave packet in
the x-θ plane. Such a wave packet can be created by a
Gaussian pulse in the x direction that overlaps with many w
modes of each cavity. This can be obtained if each cavity is
locally coupled to the waveguide where the pulse is
launched, so that the temporal shape of a short pulse of
duration τP ≪ Ω−1

FSR gets transferred to the initial profile of
the wave packet along θ.

FIG. 2. Energy levels as a function of D=J for (a) c ¼ 1 and
(b) c ¼ 2. The solid lines show the numerically obtained first
(a) five and (b) six energy eigenvalues, and the dotted lines are the
analytical approximations for D=J ≪ 1.
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In order to observe nontrivial orbits, we assume there is a
constant force applied to the x direction, which can be
implemented via an additional small constant frequency
gradient of cavities along the x direction. Provided the
initial wave packet is large enough to only explore the
harmonic region of the spectrum at small D, the center of
mass of the wave packet follows the semiclassical cyclotron
orbit determined by the classical equations of motion:

mxdvxðtÞ=dt ¼ Ex þ BeffvθðtÞ;
mθdvθðtÞ=dt ¼ −BeffvxðtÞ; ð10Þ

where mx ¼ 1=2J and mθ ¼ 1=D are the effective masses
in the x and θ directions and vxðtÞ and vθðtÞ are the
velocities of the center of mass at time t in the x and θ
directions, respectively. The constant force Ex is applied in
the x direction. Solving the equations under the initial
conditions x ¼ vx ¼ vθ ¼ 0 at t ¼ 0, the wave packet
trajectory in time follows the curve

hxðtÞi ¼ ðEx=B2
effÞ2mθsin2ðωct=2Þ;

hθðtÞi ¼ ðEx=B2
effÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
mxmθ

p
sin ðωctÞ − ðEx=BeffÞt; ð11Þ

where ωc ≡ Beff=
ffiffiffiffiffiffiffiffiffiffiffiffi
mxmθ

p
is the cyclotron frequency.

In Fig. 3, we compare the analytical semiclassical
prediction (11) for the center-of-mass motion of a wave
packet obtained with a full numerical solution of the
Hamiltonian (1) including interactions at the mean-field
level. The agreement is good and, as expected, improves
even further if smaller values of D are used.
Expansion dynamics.—As a last point, we now present a

scheme to experimentally assess the local nature of the
photon-photon interactions. We now assume there is no
force (Ex ¼ 0), and we treat the interactions at the mean-
field level. In the absence of an effective magnetic field
(i.e., c ¼ 0), a circularly symmetric Gaussian wave packet
in the x-θ plane maintains its circular symmetry during its
expansion provided scaled axes are used so that the

effective masses in the two directions are the same.
(This can be achieved by introducing a scaled variable y≡
θ

ffiffiffiffiffiffiffiffiffiffiffiffi
2J=D

p
and preparing a symmetric wave packet in the x-y

plane.). In the presence of a magnetic field (c ≠ 0), the
wave packet expansion is symmetric only when one has a
rotationally symmetric gauge. Our Hamiltonian (1) is
written in the Landau gauge where nontrivial hopping
phases are present only along one direction. In order to
observe a symmetric expansion, one needs to prepare a
Gaussian wave packet with an appropriate phase, which
corresponds to a gauge transformation from the Landau
gauge to the symmetric gauge [28,29].
In Fig. 4, we plot how such a suitably designed wave

packet expands after half the period of the cyclotron motion
in different cases. Figure 4(a) shows the initial condition of
the wave packet. Figure 4(b) shows the expanded wave
packet in the absence of interactions, when the ballistic
expansion is due to diffraction. Figure 4(c) shows the
expanded wave packet for local interactions: interactions
speed up the expansion, but the wave packet always
maintains its initial symmetric shape as expected.
For comparison, Fig. 4(d) shows the expansion for the

infinite-ranged nonlocal interactions along θ of the form
Hinf ¼ ðUinf=2Þ

P
xð
R
2π
0 dθb†xðθÞbxðθÞÞ2, which one would

obtain, e.g., in the case of a temporally slow nonlinearity. In
this case, the expansion along the θ direction does not
initially feel the effect of the infinite-range interaction in the
θ direction and is thus concentrated in the x direction. At
later times, the elongated wave packet then rotates due to
the synthetic Lorentz force induced by the synthetic

-1 0 1 2
-   

- /2

   0  

/2 

   
(a) (b)

FIG. 3. Cyclotron motion of a wave packet for Nx ¼ 31,
D ¼ 0.1J, c ¼ 1, UN ¼ 20J, and Ex ¼ 0.1J, where N is the
total number of photons. In both (a) and (b), the horizontal axis is
x and the vertical axis is θ. The initial condition of the wave
packet is plotted in (a). In (b), the center-of-mass motion of the
wave packet from t ¼ 0 to 4π=ωc is plotted. The solid line is from
the numerical simulation of the dynamics of the wave packet, and
the dashed line is the analytical prediction from Eq. (11).

FIG. 4. Free expansion of a Gaussian wave packet for c ¼ 1
and D ¼ 0.1J after the expansion time of π=ωc. (a) The initial
wave packet. (b) The expansion in the absence of the interaction.
(c) The expansion in the presence of the contact interaction with
UN ¼ 20J. (d) The expansion in the presence of the infinite-
range interaction withUinfN ¼ 5J. The horizontal axes are x, and
the vertical axes are θ.
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magnetic field, which gives rise to the nonsymmetric final
shape. Comparison of Figs. 4(c) and 4(d) then shows a clear
and experimentally observable signature of the local versus
nonlocal interactions.
Outlook.—We have shown how local interactions can be

combined with synthetic dimensions and strong synthetic
magnetic fields in an array of nonlinear optical cavities.
The exciting prospect of our scheme is to study four-
dimensional interacting models in physically three-
dimensional lattices. Once a medium with suitably strong
photon-photon interactions [30–33] is included in the reso-
nators, our proposal will open unprecedented possibilities to
study fractional quantum Hall states and the other intriguing
topological phases of matter in high dimensions [3,34].
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