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High-resolution experiments have recently lead to a complete identification (energy, spin, and parity) of
151 nuclear levels up to an excitation energy of E, = 6.20 MeV in 2%®Pb [Heusler et al., Phys. Rev. C 93,
054321 (2016)]. We present a thorough study of the fluctuation properties in the energy spectra of the
unprecedented set of nuclear bound states. In a first approach, we group states with the same spin and parity
into 14 subspectra, analyze standard statistical measures for short- and long-range correlations, i.e., the
nearest-neighbor spacing distribution, the number variance X2, the Dyson-Mehta Aj statistics, and the
novel distribution of the ratios of consecutive spacings of adjacent energy levels in each energy sequence,
and then compute their ensemble average. Their comparison with a random matrix ensemble which
interpolates between Poisson statistics expected for regular systems and the Gaussian orthogonal ensemble
(GOE) predicted for chaotic systems shows that the data are well described by the GOE. In a second
approach, following an idea of Rosenzweig and Porter [Phys. Rev. 120, 1698 (1960)], we consider the
complete spectrum composed of the independent subspectra. We analyze their fluctuation properties using
the method of Bayesian inference involving a quantitative measure, called the chaoticity parameter f,
which also interpolates between Poisson (f = 0) and GOE statistics (f = 1). It turns out to be f = 0.9. This
is so far the closest agreement with a GOE observed in the spectra of bound states in a nucleus. The same
analysis is also performed with spectra computed on the basis of shell model calculations with different
interactions (surface-delta interaction, Kuo-Brown, Michigan-three-Yukawa). While the simple surface-
delta interaction exhibits features typical for nuclear many-body systems with regular dynamics, the other,
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more realistic interactions yield chaoticity parameters f close to the experimental values.
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Introduction.—The stable doubly magic nucleus %Pb is
one of the most studied nuclei both experimentally and
theoretically. Many of its spectral properties are basically
understood in terms of the nuclear shell model. In recent
years, however, a number of high-resolution experiments
using various types of nuclear reactions have been per-
formed [1-4]. The foremost result is that now the complete
level scheme in 2%Pb is established up to an excitation
energy of E, = 6.20 MeV comprising 151 bound states, of
which the energy, spin, and parity have been unambigu-
ously determined [1]. More states with spin and parity
J*=17,27,3" are known up to E,~7.5 MeV [2-4].
In Fig. 1, the experimental levels are shown separately
for states of negative (a) and positive (b) parity for a range
of excitation energies 3.8 < E, < 6.40 MeV. Levels cor-
responding to states with natural and unnatural parity are
shown as solid diamonds and open squares, respectively.

The level scheme of 2%®Pb has also been the subject of
many shell model calculations of the one-particle-one-hole
and two-particle-two-hole type [5—17]. Mostly, the coupling
of proton particles in the orbitals 149/, 2172, 2152, 3p3/25
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3pi/2, and 1i;3/, to proton holes in the orbitals 1g7/,, 2ds ),
2d35, 3512, and 1hy, /, and the coupling of neutron particles
in the orbitals 1iyy/5, 29g9/2, 297/2, 3ds», 3d3/2, 4512, and
1ji5/2 to neutron holes in the orbitals 1hq/5, 2172, 21,2,
3p3/2, 312, and 1i3/, were taken into account; see, €.g.,
Fig. 1 of Ref. [18]—however, note the different labelings
used for the main quantum number. For detailed level
schemes of the relevant proton and neutron orbits in the
four neighboring nuclei of >®Pb, see, e.g., Fig. 1 inRef. [1] or
Fig. 3-3 in Ref. [19]. The calculations of Kuo and Brown
(KB) use four additional orbitals [5—8]. In total, there are 27
different combinations of spin and parity for one-particle-
one-hole states in 2°®Pb. The surface-delta interaction (SDI),
which acts only at the nuclear surface, has been introduced
as a simple extension of the schematic shell model without
a residual interaction. The associated interaction strength
depends on the atomic mass number as the ratio of the
surface to the volume term and on geometrical recoupling
coefficients [15—17]. The KB interaction is based on the free
nucleon-nucleon potential of Hamada and Johnston [5-8]
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FIG. 1. Experimental levels for states in 2%®Pb at 3.8 < E, <

6.4 MeV with negative parity (a) and positive parity (b). They
are compared to the levels calculated for the M3Y residual
interaction with negative parity (c) and positive parity (d). Solid
diamonds and open squares show the levels with natural and
unnatural parity, respectively.

and the more recent two-body Michigan-three-Yukawa
(M3Y) interaction on a one-boson exchange potential with
short-range components determined with the help of the Reid
nucleon-nucleon potential [12—-14]. Figure 1 shows the
excitation energies calculated with the shell model which
employs the effective nucleon-nucleon interaction M3Y for
negative (c) and positive (d) parity.

The main objective of the present Letter is not a level by
level comparison but rather a comparison of the spectral
properties of the whole set of detected bound states in 2%Pb
up to an excitation energy of E, = 6.20 MeV, which
is still about one MeV below the neutron threshold
[S(n) = 7.368 MeV], and of the three theoretical models
with random matrix theory (RMT) results. For a generic
quantum system with classically regular dynamics, the
spectral properties are predicted to coincide with those of
Poissonian random numbers [20]. According to the Bohigas-
Giannoni-Schmit conjecture [21], the spectral properties of
time-reversal-invariant chaotic systems are well described
by those of the eigenvalues of real-symmetric matrices with
Gaussian distributed random entries from the Gaussian
orthogonal ensemble (GOE) [22-26]. These features are
also observed in nuclear many-particle systems with no
obvious classical analogue. Their spectral properties are
described by Poissonian statistics, if the motion of the
particles is collective, whereas for sufficiently complex
motion they exhibit GOE statistics [27-30]. There are
various methods to obtain information on the chaoticity vs
regularity in a nuclear many-body system from its spectrum;
see, e.g., the review articles [30,31]. We analyzed the
fluctuation properties of the energy levels using two models,
where one is based on a RMT ensemble [32-34] and the other
one on the method of Bayesian inference [35-37]. Both

provide quantitative measures for the chaoticity in terms of a
parameter which interpolates between the Poisson statistics
and GOE statistics.

Spectral data.—We note that, besides for 28 Pb, there are
to our knowledge only two other nuclei for which complete
level schemes exist, namely, 2°Al and °P [38—40]. That of
116Sn has been termed “nearly complete” by the authors
of Refs. [41,42]. Furthermore, the analysis of the spectral
properties of experimentally determined bound states of
nuclei did not yield the results expected in nuclear many-
body systems exhibiting a chaotic dynamics. For light
nuclei this was attributed to the insufficient number of
identified bound states, and for nuclei like 2°Al and °P to
the partial isospin symmetry breaking [38,39]. The present
analysis of the experimental data is based on the 151 bound
states with unambiguously assigned parity and spin [1],
so the results are statistically significant.

We applied two different approaches to analyze the
spectral fluctuation properties of the experimental data
[1-4] and calculations [5—-12,15-17]. In the first approach,
we determined the ensemble averages of the statistical
measures for the spectral properties of each level sequence
[43] characterized by spin and parity. In the second approach,
we followed an idea of Rosenzweig and Porter [44] and
considered the complete spectrum composed of the inde-
pendent subspectra and analyzed their fluctuation properties
using the method of Bayesian inference. Note that the
spectral properties are Poissonian, when we use the complete
experimental spectrum irrespective of parity and spin; see
Fig. 6 of Ref. [45]. In both approaches, we considered only
subspectra that contained at least five levels. Furthermore, we
first unfolded the energy levels E; in each sequence indi-
vidually by replacing them by the smooth part N(E;) of the
integrated level density, yielding a mean spacing of unity
(s) = 1. The latter was determined from a fit of a third-order
polynomial to the integrated level density. In order to assure
ourselves that the spectral properties do not depend on the
unfolding procedure, we, in addition, unfolded the energy
levels using an empirical formula [46,47], N(E) = exp|(E —
Ey)/T) + Ny with T, Ey, and N, the fit parameters. It was
applied to low-lying nuclear levels in Ref. [48]. We came to
the result that both procedures yield very similar results for
the fluctuations of the energy levels.

Ensembles of subspectra.—In order to get information
on the chaoticity of the nuclear many-body system we
calculated for each sequence of unfolded levels (i) the
nearest-neighbor spacing distribution (NNSD) P(s ), (ii) the
number variance X2, (iii) the Dyson-Mehta Aj; ‘statistics
[25,26] which gives the least-square deviation of the
integrated level density from the best-fit straight line,
and (iv) the distribution of the ratios of the consecutive
spacings of adjacent energy levels [49,50], which has the
advantage that the energy levels need not be unfolded. The
corresponding analytical expressions for Poisson and GOE
statistics are given in Refs. [25,26,49].
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TABLE I. The number of sets m and spacings N for the
composite experimental (Exp.) spectra (All), positive (+) and
negative (—), natural (Nat.) and unnatural (Unnat.) parity, and for
those calculated with three different models. The numbers N are
larger for the models than for the experimental data, because we
had levels with energies larger than 6.2 MeV at our disposal. The
chaoticity parameter and its variance f = f & ¢ were obtained
with the method of Bayesian inference [Eqs. (3) and (5)]. The
chaoticity parameter A was obtained with the RMT model Eq. (1),
and o, gives the mean-square deviation of the respective NNSD
from the corresponding analytical expression Eq. (2).

Model  Parity m N f c A c;

Exp. All 14 128  0.95 0.015 1.50  0.060
SDI All 13 262 0.18 0.069 0.08 0.001
M3Y All 13 282 0.73 0.066 0.64 0.053
KB All 14 257 0.62 0.070 0.60 0.074
Exp. + 7 45 0.94 0.033 1.70  0.140
SDI + 6 82 0.05 0.042 0.01 0.010
M3Y + 6 84 0.84 0.079 1.13 0.081
KB + 4 62 0.88 0.059 1.50 0.118
Exp. — 7 83 0.87 0.091 0.70 0.093
SDI — 7 180 0.10 0.062 0.05 0.025
M3Y — 7 198 0.66 0.085 0.64 0.057
KB - 10 295 062 0.070 0.50 0.079
Exp. Nat. 5 79 0.92 0.051 1.20  0.096
SDI Nat. 7 136 0.16 0.087 0.05 0.001
M3Y Nat. 7 147 0.80 0.073 0.75 0.094
KB Nat. 7 169 0.74 0.091 1.10 0.085
Exp. Unnat. 6 49 0.89 0.084 2.00 0.120
SDI Unnat. 6 126  0.09 0.063 0.10 0.001
M3Y Unnat. 6 135 0.65 0.096 0.58 0.089
KB Unnat. 6 188 0.62 0.088 0.50 0.079

We analyzed the statistical measures for the experimental
energy levels and for the levels obtained from nuclear
model calculations using the SDI, M3Y, and KB inter-
actions for each of the m subspectra separately and
subsequently computed their ensemble averages, where
the values of m are given in Table I. Then we compared
them to those of random matrices from an ensemble
interpolating between Poisson and the GOE [32,34]:

H(A) = (Hy+AH,)/V 1+ 22, (1)

where H, is a diagonal matrix of random Poissonian
numbers and H, is a matrix from the GOE. Here, the
range of values of the entries of H coincided with that of
the eigenvalues of H. Furthermore, the variances of the
matrix elements of Hy and H; were chosen such that the
mean spacings of their eigenvalues equaled unity, respec-
tively. For 1 = 0O the statistics is Poissonian, whereas for
A Z 1 the statistical properties are close to those of random
matrices from the GOE. In Ref. [32], a Wigner-like
approximation was derived for the NNSD using 2 x 2
random matrices. It is given in terms of the Bessel function
Iy(x) and the Kummer function U(a, b, x) as

Pp_Gog(s.4) = su(4)?/Aexp [~u(2)*s* /42%]

x / " dee SR Esu(i) ), (2)

with u(1) = \/zU(=1/2,0,2?). In order to determine the
parameters A for the experimental and calculated spectra, we
fit this expression to their NNSDs and also compared their £?
statistics with that obtained for the RMT model Eq. (1)
around the respective A values. The inclusion of long-range
correlations turned out to be crucial for the determination of
the best-fit parameters. The A values and the mean-square
deviation of the respective NNSD from the analytical one, ;,
are given in the last two columns in the rows termed “All” in
Table I. We repeated the analysis taking into account only
levels with positive, negative, natural (J* = 17,27, ...), and
unnatural (J* =07,1%,27,...) parity, respectively. This
analysis clearly revealed that the spectral properties of the
experimental levels are very close to the GOE. The NNSDs
for the M3Y and the KB interaction models are also close to
the GOE; however, their X7 statistics hint at a slightly larger
contribution from regular behavior than for the experimental
ones. Interestingly, for all these cases the spectra of levels
with positive or natural parity are closer to the GOE than
those with negative and unnatural parity, respectively. The
SDI model, on the contrary, clearly exhibits Poissonian
features. We illustrate the findings in Figs. 2-4, where we
compare the NNSD, the Aj; statistics, and the ratio distribu-
tions of the experimental and calculated levels (histograms
and circles) with those of Poissonian random numbers (dash-
dotted lines) and of random matrices from the GOE (dashed
lines). Furthermore, Figs. 3 and 4 show the results (red
histogram and dots) obtained from the RMT model Eq. (1)
using the 4 values given in Table I; see also Figs. 1-3 of
Ref. [45]. A second measure for the chaoticity vs regularity is
analyzed in the next section.
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FIG. 2. Nearest-neighbor spacing distribution of all experimen-
tal and calculated energy levels, respectively (histograms). They
are compared to the Poisson (dash-dotted line) and the GOE
(dashed line) distribution. The solid curves in red were deter-
mined with the method of Bayesian inference [Eqs. (3) and (5)].
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FIG. 3. The Dyson-Mehta statistics of all experimental and

calculated energy levels, respectively (black circles), in compari-
son to the Poisson (dash-dotted line) and GOE (dashed line)
results, and the RMT model Eq. (1) for the corresponding best-fit
parameter A (red dots).

Superimposed subspectra.—For the analysis of the
composite spectra, we proceeded as described in
Refs. [35-37]. Accordingly, we first computed the spacings
between adjacent unfolded energy levels in each subspec-
trum separately and then merged them irrespective of spin
and parity into one sequence of spacings s;,i=1,....,N
with N given in Table I. An approximate expression was
derived for the NNSD p(s, fy,....f,,) of a spectrum
composed of m subspectra with fractional level numbers
0<f;<1,j=1,...,m, in Ref. [44]. In Ref. [35], an
approximation was derived which depends only on one
parameter f = Z}"Zl f? and is given by

ps.0)= (1= 450075 ) exp (1= s =501

3)

with Q(f) = 0.7f + 0.3f%. Note that for f =0, which
corresponds to a spectrum composed of a large number
of subspectra consisting of a few number of levels, this
distribution approaches the Poisson distribution, whereas
for f — 1 it converges to the NNSD of the GOE. Therefore,
f is referred to as the chaoticity parameter.

In order to determine the values of f for the experimental
and calculated composite spectra, we used the method
of Bayesian inference [51]. Assuming that the spacings
sj,j=1,...,N, are statistically independent, their joint
probability distribution can be written as the product

p(slf) =[] p(s;. ). (4)
j=1

where we used the notations = (s, 5, ..., sy) and p(s;, f)
is given by Eq. (3). The assumption, actually, restricts the
applicability of the approach to short-range correlation
functions. According to Bayes’ theorem, the posterior

—T T T T T F T T T T
SDI

P(r)

P(r)

FIG. 4. Ratio distributions of all experimental and calculated
energy levels, respectively (black histogram), in comparison to
the Poisson (dash-dotted line) and GOE (dashed line) results, and
the RMT model Eq. (1) for the corresponding best-fit parameter 4
(red histograms).

distribution of the parameter f for a given sequence of
spacings s is given as

Piln) =" )

where u(f) is the prior distribution of f and A (s) is the
normalization constant. Using Jeffrey’s rule [51-53], an
approximate expression was derived for u(f) in Ref. [36],
u(f) = 1.975 — 10.07f + 48.96f2 — 135.6f3 + 205.6f*—
158.6f3 + 48.63 9. To determine the chaoticity parameter f,
we computed the joint probability distribution of the spacings
p(s|f) for 0 < f < 1 using Eq. (3). The best-fit value of f
was then obtained as the mean value f = [} fP(s|f)df,
which gives the fraction of subspectra that exhibit

GOE behavior with variance o, f = f + ¢, where ¢> =

Jo(f = f)*P(s|f)df provides a measure for the uniformity
of chaoticity in the ensemble of subspectra. This yielded the
values of f and o listed in Table I for the experimental and
calculated spectra. They are in line with those obtained with
the RMT model Eq. (1). The corresponding NNSDs are
shown as red curves in Fig. 2 and in Fig. 4 of Ref. [45].
Results, discussion, and conclusion.—Table I summa-
rizes the results of the analysis of the recently completed
level scheme of 2%®Pb at E, <6.20 MeV together with
complementary results from calculations. For the exper-
imental and the calculated spectra of the nuclear models
with M3Y and KB interactions, the chaoticity parameters f
and 4 indicate that the spectral properties are described by
the GOE, even though there seems to be some small
admixture from regular dynamics in the latter two cases.
The chaoticity parameters for the SDI, on the contrary,
suggest a behavior which is close to Poisson statistics. In a
second step, the same analysis has been applied to the
spectra of energy levels with positive, negative, natural, and
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unnatural parity, respectively. Albeit the sample sizes
of m and N are smaller, the chaoticity parameters for
the experimental spectra and for those calculated with the
M3Y and KB interactions again are close to the values of
GOE statistics. Note that the parameters are closer to that
for a pure GOE for levels with positive and natural parity
than for those with negative and unnatural parity. In
contrast, all chaoticity parameters obtained for the SDI
interaction are compatible with regularity. We may con-
clude that the SDI, which provides a simple extension of
the schematic shell model [15], does not describe the
underlying interactions in the nucleus **Pb correctly. On
the other hand, the M3Y and KB interactions are based on
realistic, effective nucleon-nucleon interactions.

However, especially our finding for the levels with
unnatural parity differs from those of an analysis of the
NNSD based on the same experimental data [1] in terms
of the Brody distribution [54], which also depends on a
chaoticity parameter [55]. These discrepancies might
originate from the fact that the analysis of Ref. [55]
did not include long-range correlations. Nevertheless, we
obtain chaoticity parameters close to the values for the
GOE even when taking into account only the NNSD. To
ensure that this discrepancy does not arise from the
unfolding procedure, we furthermore evaluated the ratio
distributions using ensembles of subspectra comprising
the natural and unnatural parity states, respectively. This
analysis corroborated the outcome of the calculations
with the RMT model Eq. (1) and the method of
Bayesian inference.

In conclusion, by analyzing a complete set of levels in
208Pb with unambiguously assigned spin and parity with
the RMT model Eq. (1) and the Bayesian method, evidence
has been presented for fluctuation properties which are
consistent with those of random matrices from the GOE
and, thus, for chaoticity of the nuclear system. Similar
results were obtained from the analysis of the spectra
generated from nuclear model calculations with M3Y and
KB interactions. These two models confirm that the
chaoticity is caused by a nuclear residual interaction that
mixes the configurations inextricably in the many-body
system. Indeed, e.g., in the M3Y model, the spectral
properties of the unperturbed energy levels, i.e., the
diagonal elements of the Hamiltonian H, yielded for the
chaoticity parameters f =0.19, 6 = 0.066 and A = 0.09,
0, = 0.010, respectively; that is, they exhibit Poisson
statistics—see Fig. 5 of Ref. [45]. These values, actually,
are close to those for the SDI interaction. Furthermore, the
distance between the unperturbed energy levels for each
value of J* and the perturbed ones, i.e., the eigenvalues
of H, is considerably larger than the root-mean square
of the off-diagonal interaction matrix elements of H; see
Chap. 4 of Ref. [56]. Thus, the SDI interaction seems to be
too weak to induce a sufficient mixture of the individual
configurations to yield a chaotic dynamics.
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