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Future cosmological surveys will probe the expansion history of the Universe and constrain phenom-
enological models of dark energy. Suchmodels do not address the fine-tuning problem of the vacuum energy,
i.e., the cosmological constant problem (CCP), but can make it spectacularly worse. We show that this is the
case for “interacting dark energy” models in which the masses of the dark matter states depend on the dark
energy sector. If realized in nature, these models have far-reaching implications for proposed solutions to the
CCP that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that
current estimates of the number of flux vacua in string theory,Nvac ∼Oð10272 000Þ, are far too small to realize
certain simplemodels of interacting dark energy and solve the cosmological constant problem anthropically.
These models admit distinctive observational signatures that can be targeted by future gamma-ray
observatories, hencemaking it possible to observationally rule out the anthropic solution to the cosmological
constant problem in theories with a finite number of vacua.
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The Universe expands at an accelerating rate [1,2],
apparently driven by a negative pressure “dark energy”
with an energy density of [3,4],

ρ0 ≈ ð2.3 × 10−3 eVÞ4
�
ΩΛ

0.69

��
h

0.68

�
2

: ð1Þ

There are many computable contributions to the vacuum
energy density, ρvac, but unfortunately these tend to be
comparatively large: quantum zero-point fluctuations of a
fieldofmassM generically contributes by∼½1=ð4πÞ2�M4 after
renormalization [5], which then needs to be canceled order by
order in perturbation theory to an accuracy of one part in

fΛ ¼ M4

ð4πÞ2ρobs
; ð2Þ

to yield an effective vacuum energy compatible with Eq. (1).
The scaleM is at least as large as the top-quark mass mtop ¼
173 GeV (say, if supersymmetry is realized at the TeV scale),
andmay be as large as the Planckmass,MPl¼2.4×1018GeV,
thus leading to a fine-tuning of

fΛ ¼
�
2 × 1053 M ¼ mtop;

9 × 10117 M ¼ MPl:
ð3Þ

Hence, ρvac is extremely sensitive to high-scale physics, and
the required cancellations are perturbatively unstable. This is
the cosmological constant problem (CCP).
Over the coming decades, several large cosmological

surveys such as DESI, LSST, Euclid, and WFIRST will
measure the cosmic expansion history and structure growth,
and produce stringent constraints on phenomenological
models of dark energy. This will make it possible to
distinguish between the simplest of these models, ΛCDM,
and several more general models involving time-dependent
vacuumenergydensities ormodifications of general relativity.

It is important to note that these models do not address nor
solve theCCP, but inmany cases make this problemworse by
introducing additional unprotected relevant operators (e.g.,
potential gradients or masses) that need to be fine-tuned,
and/or by requiring that ρvac≪ð10−3 eVÞ4 to make room for
other mechanisms to generate an accelerated expansion.
In this Letter, we illustrate this point by considering

models of “interacting dark energy” in which the dark
matter fields are coupled to the dark energy sector, leading
to varying dark matter masses. Such models may a priori
appear quite natural as couplings between dark matter and
dark energy are not in general forbidden, and suitable
interactions may potentially explain the cosmic coinci-
dence: why ΩΛ=Ωm ∼Oð1Þ. Interacting dark energy has
been shown to be compatible, or even favored, by current
observations [6–11]. For reviews see Refs. [9,12].
We here show that cosmological models with varying

dark matter masses are far from natural and can in fact
exacerbate the CCP to fantastic levels. The reason is simple:
the vacuum energy density depends on any mass, M, and
even a small variation δM in the spectrum can induce an
enormous variation in the vacuum energy density,

δρvac ∼ δMM3 þ � � � ð4Þ
Ensuring that the scalar potential of the dark energy field is
flat enough to give a viable cosmology then requires
additional, fine-tuned cancellations. We here show that
the total fine-tuning,

ftot ¼ fΛfδM; ð5Þ
is unbounded from above and may be as large as 1010

10

in
simple examples. We note that this argument is not specific
to interacting dark energymodels but appliesmore generally
to any model with cosmologically varying fundamental
parameters (cf. Refs. [13,14]).
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Whatever the ultimate solution of the CCP is, it is not
expected to set all potential energies to zero, and hence, the
additional fine-tuning from varying masses raises an addi-
tional challenge for any proposed solution of the problem.
Here, we point out that the extreme unnaturalness of these
models, if realized in nature, would have significant
conceptual implications, in particular for anthropic solu-
tions to the CCP, as we now discuss.
In theories with a very large number of vacua (say,

Nvac≫fΛ) between which ρvac takes on different vacuum
expectation values, it is plausible that a small subset of the
vacua have ρvac≲ρvac;obs by chance. Assuming amechanism
that could realize each of these vacua with some probability,
the CCP may be solved through environmental selection, as
solutions with ρvac≫ρ0 would not permit cosmological
structure formation or intelligent life, and hence have a
vanishing probability of being observed [15–18].
In this context, any dark energy model that requires

additional tuning beyond that of the CCP is disfavored on
statistical grounds [19].Here,wenote that suchmodels cannot
be expected to be realized at all unlessNvac ≫ ftot, and hence,
a simultaneous realization of certain interacting dark energy
models and the anthropic solution to the CCP is only justified
in theories with an exceptionally large number of vacua.
String theory appears to have many four-dimensional

vacuum solutions [20–23]. While the complete vacuum
structure of string theory remains a distant goal, the number
of vacua in particular constructions has been estimated,
with the largest numbers arising from compactifications in
which generalized electromagnetic fluxes wrap nontrivial
cycles of the compactification manifold. Rough estimates
of the number of such “flux vacua” on particular compac-
tification manifolds include [24,25]

Nvac ≈
�
Oð10506Þ IIB onCP1;1;1;6;9 ;

Oð10272 000Þ F theory onMmax:
ð6Þ

Reference [25] argued that flux compactifications onMmax
dominate the total number of flux vacua by roughly a factor
ofOð103000Þ. As the vacuum number estimates [Eq. (6)] are
larger than the required fine-tuning in Eq. (2), it is possible
that string theory flux vacua admit an anthropic solution to
theCCP.Wehere show that this is no longer the case if certain
models of interacting dark energy are realized in nature.
We finally point out that these extremely fine-tuned

models may give rise to observational signals that could be
targeted by upcoming experiments. Observational evidence
for such a model could then be interpreted as evidence
against the anthropic solution of the CCP in any theory with
a finite number of vacua.
Varying α and the CCP.—We begin by illustrating how

cosmologically varying “constants” exacerbate the CCP by
considering models in which the fine-structure constant
evolves over cosmological scales. Such models have
been considered in great detail in the literature (see
Refs. [14,26–32] and references therein), largely motivated
by the claimed detection of a variation in α inferred from

observations from distant quasars [33–36]. However, while
field-dependent coupling constants are commonplace in
high-energy physics, quantumeffectsmakevarying constants
unnatural: this point was made independently in Ref. [13],
which argued that variations ðδα=αÞ≳ 10−37 would require
additional fine-tuning of the vacuum energy, hence, making
quintessencemodels with varying constants unnatural, and in
Ref. [14] (which, however, furthermore argued that varying
constants should be expected if the anthropic principle is
realized in nature. The strong assumptions leading to this
conclusion have not been realized in string theory).
We here review how theories with varying α exacerbate

the CCP, and we extend the results of Refs. [13,14] by
computing the additional fine-tuning required to keep the
vacuum energy sufficiently small in such theories. Hence,
we take α to depend on a scalar field χðt;xÞ subject to a
quantum effective potential with both an explicit and
implicit dependence on χ,

Veff(μ;χ;αðχÞ)¼V0;rðχÞþ
M4

ð4πÞ2
X∞
k¼1

fkðμÞ
αk−1

ð4πÞk−1 ; ð7Þ

where V0;r denotes the renormalized classical potential, M
is a large mass scale corresponding to charged particles
running in loops, and μ the renormalization group scale.
Equation (1) is then satisfied by imposing the renormal-
ization condition,

Veffðμ̄; χ̄; ᾱÞ ¼ ρ0; ð8Þ
where χ̄ denotes the local value of the field, and ᾱ the low-
energy, laboratory value of α at the renormalization scale μ̄.
The fine-tuning associated with Eq. (8) is just that of Eq. (2).
Now consider a variation in the field χ which induces a

small, space-time dependent variation δα(χðt;xÞ) of maxi-
mal magnitude δαm [37]. We first consider the field
variation δχðt;xÞ ≤ δχm to be small compared to the
relevant cutoff scale, Λ, so that we can expand α as
δα=ᾱ ¼ cðδχ=ΛÞ. The vacuum energy density is given by

Veff ¼ρ0þδV0;rðχÞþ
M4

ð4πÞ2
X∞
k¼1

ck

�
δαm
4π

�
k
�

δχ

δχm

�
k
; ð9Þ

where the coefficients ck generically are Oð1Þ. Veff should
not to exceed some observationally inferred value ρm
(which will depend on the redshift range over which α
varies) over the entire field range ½χ̄; χ̄ þ δχm�. We intro-
duce the notation

B ¼ M4

ð4πÞ2ρm
; δ ¼

�
δαm
4π

�
; ð10Þ

and note that ensuring the flatness of the effective potential
requires fine-tuned cancellations between loop corrections
and terms in δV0;r: for terms of OðδχkÞ, the accuracy of
the cancellation can be estimated to one part in Bδk,
requiring some amount of fine-tuning up to order kmax ¼
floor( lnðBÞ= lnð1=δÞ).
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In direct analogy with Eq. (2), the exacerbation of the
CCP caused by varying α is given by, fδα ¼

Qkmax
k¼1 Bδk, and

the total fine-tuning of the CCP in theories with varying α is
then given by

ftot ¼ fΛfδα ¼ r
Ykmax

k¼0

Bδk

¼ rBðkmaxþ1Þð1−kmax lnðδ−1Þ
2 lnðBÞ Þ ≈ rB

1
2
ðkmaxþ1Þ; ð11Þ

where r ¼ ρm=ρ0, and where in the last step we have
approximated kmax ≈ ½lnB= lnð1=δÞ�.
To illustrate the severity of the additional fine-tuning,

we take δαm=ᾱ ¼ 10−6, as motivated by the observations
[34–36], and impose that the vacuum energy is subleading
to the matter energy density at z ¼ 3 (around which time
light from the distant quasars was emitted) so that
ρm ¼ 43Ωm;0ρc. We then have,

δ¼ 6×10−10; B¼ 9×1050×

�
M

100GeV

�
4

; ð12Þ

giving

ftot ¼
�
2 × 10174 M ¼ mtop;

3 × 10795 M ¼ MPl;
ð13Þ

which should be compared with the corresponding esti-
mates for the ordinary CCP in Eq. (2).
Hence, even minute variations of α substantially worsen

the CCP, but the required fine-tunings of Eq. (13) remain far
smaller than theF-theory vacuumnumber estimate ofEq. (6).
The linear dependence of δα on χ is not crucial to our

argument, and the same conclusions could be reached for a
more general monomial form of the variation, δα ∼
ðᾱδχ=ΛÞq for q ≥ 1. Subleading terms in the expansion
will in general increase the fine-tuning somewhat, but will
only become important if the variation in α is caused by a
large-field variation of the dark energy field, χ > Λ. In this
case, kmax → ∞ and ftot → ∞.
Interacting dark energy.—Are there models that could

make the fine-tuning of the CCPmassively worse than what
is possible in theorieswith varyingα?Wewill now show that
the answer to this question is yes: in multifield models of
interacting dark energy, keeping the effective potential flat
over a multiple dimensional domain in field space
(cf. ½ χ̄; χ̄ þ δχm�p for p > 1) requires fantastic amounts of
fine-tuning. In the section “Observational prospects” we
discuss the observational prospects of such models.
Studies of interacting dark energy have primarily

focussed on deriving cosmic microwave background and
large-scale structure (LSS) constraints on the form and
magnitude of the energy transfer between the dark matter
and dark energy sectors. Microscopic realizations of such
models with any form of varying parameters exacerbate the
CCP (see also Ref. [39]). Here, we present a particular
example of a broad class of microscopic models that can
realize a variety of phenomenological scenarios. For
concreteness, we consider a dark matter sector with p real
scalar fields, ϕi, subject to the classical potential,

V0;ϕ;r ¼
1

2
m2

i ðϕiÞ2 þ 1

4!
λiðϕiÞ4 þ

X
i≠j

1

ð2!Þ2 λijðϕ
iÞ2ðϕjÞ2:

Quantum effects correct this potential at each loop order:
using dimensional regularization and MS renormalization,
the one-loop Coleman-Weinberg potential is given by

V1l ¼
Xn
i

m4
i

64π2

�
ln

�
m2

i

μ2

�
−
3

2

�
; ð14Þ

for where μ denotes the renormalization scale. Higher loop
orders induce a more complicated dependence on the
masses and couplings, as we here illustrate by the processes
depicted in Fig. 1. At two loop order, cross terms of the form,

V2l ⊃
λ12

ð4πÞ4 m
2
1m

2
2L

�
m2

1

μ2

�
L
�
m2

2

μ2

�
; ð15Þ

are inducedwhile at four loopsVeff receives contributions of
the form,

V4l ⊃
λ13λ14λ12

2 × 3!ð4πÞ8
m2

2m
2
3m

2
4

m2
1

Y4
i¼2

L

�
m2

i

μ2

�
: ð16Þ

Here Lðm2
i =μ

2Þ ¼ ln ðm2
i =μ

2Þ − 2.
The dark matter masses are now assumed to be functions

of dark energy fields χα ¼ χαðt;xÞ, for α ¼ 1…p. The
renormalization condition of the vacuum energy is given by

Veffðμ̄; m̄iÞ ¼ V0;ϕ;r þ V0;χ;r þ
X
n¼1

Vnl ¼ ρ0; ð17Þ

with ρ0 as in Eq. (1).
For simplicity, we here take the fields χα to induce

independent variations of the masses of the form δmi=m̄i ∼
χi=Λ, and we again assume that the variation of the field is
small with respect to the cutoff Λ (we will return to large-
field models in the section “Observational prospects”).
Given some fractional variations of the darkmattermasses,

δi ≡ δmi=m̄i, the change in the effective potential is given by

δVeff ¼ δV0;χ;r þM4
X∞

not all ki¼0
ki¼0

ck

ð4πÞ2lk δ
k1
1 …δ

kp
p ; ð18Þ

where k ¼ ðk1;…; kpÞ, and M denotes a suitable mass
scale [40]. From Eqs. (14)–(16) we see that cross terms
between n distinct masses arise at n-loop order, and hence,
lk, which denotes the first loop order at which the
contribution with index k appears, is given by lk ¼
p −

Pp
i¼1 δ

0
ki

(a rather good, simple lower bound on the
fine-tuning can be obtained by taking lk ¼ p).

1

2 31

1

4

12

FIG. 1. Contributions to the vacuum energy.
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For concreteness, we specialize to fractional variations
that are independent but of the same amplitude, maxðδiÞ ¼
δm and field variations χi ∈ ½0; χm�. We will furthermore
consider dark matter masses around m̄ ¼ M ¼ 100 GeV
and take all quartic interactions λi; λij ∼Oð1Þ so that
ck ∼Oð1Þ. We note that this gives σ=m̄∼1=m̄3≪1cm2=s,
consistent with the bound on dark matter self-interactions
from the Bullet cluster [41]. The upper bound on the energy
density, ρm, is model dependent as it is sensitive to how and
when the dark energy evolves. Here, we conservatively note
that supernovae data are consistent with ΛCDM [42], and
take ρm ¼ 10ρ0 for models with masses varying between
0 < z≲ 1.5. We then have B ¼ M4=ρm ¼ 4 × 1053.
Keeping the effective potential sufficiently flat over the

entire p-dimensional domain ½0; χm�p now requires accu-
rate cancellations not only of terms of the form χki for some
fixed species with index i, but of cross terms with other
fields as well. Proceeding as in the single-field case, the
additional fine-tuning is given by

fδm ≡ YP
p
i
ki≤kmax

not all ki¼0
k1 ;…;kp¼0

B
1

ð4πÞ2lk δ
ð
P

p
i¼1

kiÞ; ð19Þ

where we take kmax ¼ lnðBÞ= lnðδ−1Þ þ p lnð16π2Þ= lnðδÞ.
Evaluating the product, the total fine-tuning is given by

ftot ¼ fΛfδm

¼ r
�

1

16π2

�½ðkmaxþp−1Þ!=ðp−1Þ!ðkmax−1Þ!�þ1

×B½ðkmaxþpÞ!=p!kmax!�f1−ðp=pþ1Þ½kmax lnðδ−1Þ�=½lnðBÞ�g; ð20Þ
where, again, r ¼ ρm=ρ0. Equation (20) is the main result of
this Letter and is numerically evaluated in Fig. 2. The fine-
tuning diverges as δ → 1, and is extremely large already for
modest variations of multiple masses. In particular, for 25%
variations of 3 masses, ftot ≈ 1010

6

, exceeding the vacuum
number estimates of Eq. (6). Fine-tuning of 1 part in 1010

10

is
required, e.g., for models with 4 masses and δ ¼ 0.75.
Observational prospects.—Of crucial importance is

whether the class of highly tuned interacting dark energy
models discussed in this Letter can be observationally
distinguished from less fine-tuned models. Obviously, multi-
ple dark matter masses can vary due to couplings to a single
field χ, and keeping the effective potential flat over a p ¼ 1
curve in field space may require much less fine-tuning than
over a p > 1 domain. Hence, simply observing multiple
varying masses cannot be regarded as evidence for the most
fine-tuned models discussed here. Nevertheless, we will now
show that observational evidence for highly tuned models
may in principle be in reach by future experiments.
Current and future cosmic microwave background and

LSS experiments will constrain the energy transfer between
the dark matter states and the dark energy sector, thereby
constraining the masses, couplings, and abundances Ωϕi

in
the models considered here. However, such observations

are unlikely to by themselves determine the details of the
underlying microscopic model.
The “smoking gun” signal of these models instead arises

through veryweak darkmatter couplings to photons, leading
to the decay ϕi → γγ that may be observable from dark
matter dense astrophysical objects. The variation in the dark
matter masses would cause a variation in the energy of the
photon line, Eiðt;xÞ ¼ mi(χαðt;xÞ)=2, over the sky, which
could be mapped out to very high accuracy if the signal is
detectable from individual galaxies or galaxy clusters. For
dark matter masses of ∼100 GeV, such signals could in
principle be observed by future gamma ray observatories.
To establish that the signal arises from a very fine-tuned

model, wemust in addition show that it corresponds to either
a large-field variation (δχ=Λ > 1) or a variation in a p > 1
dimensional domain of field space. It suffices to consider a
simple example to see that this may indeed be possible.
For concreteness, we consider a p¼3model in which the

profiles of the dark energy fields in the local Universe can
be approximated by χ1 ¼ χ0x=L, χ2 ¼ χ0y=L, χ3 ¼ χ0z=L
for some χ0≪Λ and for some cartesian coordinates
0< jxj; jyj; jzj<L. We here neglect the explicit time depend-
ence of the dark energy profiles as these are expected to vary
slowly on observational time scales, and we again take the
dark matter mass mi to depend only on χi, so that m1ðxÞ,
m2ðyÞ and m3ðzÞ. By detecting the corresponding photon
lines from a large number of astrophysical objects, we can
establish that a three-dimensional domain ofmass-parameter
space is sampled. Can a single field model give rise to the
same observational signal? Surely so, as long as the one-
parameter curve miðχÞ covers the entire three-dimensional
mass-parameter space sufficiently densely to be consistent
with observational accuracy. However, such a single-field
model is too complicated to be described by a small-field
model under perturbative control, and hence, must corre-
spond to a large field model, and hence ftot → ∞. Thus, the
p ¼ 3 small-field model with excessively large fine-tuning
provides the most natural explanation of such observations.
By this example and Eq. (20), we have shown that there

exists possible future observations for which models with a
fine-tuning larger than the vacuum number estimates of
Eq. (6) provide the simplest explanation.
We note, however, that the dimension of the image of the

map x → χiðxÞ is not greater than 3 and hence less than
the dimension of the target space for p > 3. This means that
the profiles χiðxÞ need to be very complicated to densely

10 –6 10 –5 10 –4 10 –3 10 –2 10 –1

102

104

106

108

1010

lo
g 1

0(
f to

t)

FIG. 2. From bottom and up: black lines correspond to p¼1–4,
6, 8; grey horizontal lines to log10ðftotÞ ¼ 506 and 272 000.
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sample a p-dimensional domain, and we expect that such
models will be hard to realize in cosmological models and,
moreover, to observationally distinguish from thep ¼ 3 case.
Conclusions.—We have shown that models in which

fundamental parameters vary over cosmological scales
generically spoil the delicate cancellations of vacuum
energies required by the observed smallness of the cos-
mological constant, in effect making the cosmological
constant problem substantially worse. Models of interact-
ing dark energy gives a stark illustration of this point: we
have for the first time shown that there exists rather simple
cosmological models with characteristic observable signa-
tures which are too fine-tuned to be compatible with an
anthropic solution of the cosmological constant problem in
theories with any finite number of vacua. Our argument
applies in particular to ‘flux vacua’ of string theory, which
according to current estimates (6) are numerous but finite.
We note in closing that varying constants can be made

natural if a mechanism dictates cancellations of the various
contributions to the effective potential. Supersymmetry pro-
vides an example of such amechanism, but supersymmetry is
not realized in nature below the TeV scale and, hence, cannot
solve the fine-tuning problem of interacting dark energy.
Other mechanisms to the same effect may in principle exist,
but none have so far been identified nor shown to be realized
among the effective theories arising from flux compactifica-
tions for which the vacuum number estimates Eq. (6) applies.
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