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The linear in mass ratio correction to the periapsis advance of equatorial nearly circular orbits around a
spinning black hole is calculated for the first time and to a very high precision, providing a key benchmark
for different approaches modeling spinning binaries. The high precision of the calculation is leveraged to
discriminate between two recent incompatible derivations of the 4 post-Newtonian equations of motion.
Finally, the limit of the periapsis advance near the innermost stable orbit (ISCO) allows the determination of
the ISCO shift, validating previous calculations using the first law of binary mechanics. Calculation of the
ISCO shift is further extended into the near-extremal regime (with spins up to 1 − a ¼ 10−20), revealing
new unexpected phenomenology. In particular, we find that the shift of the ISCO does not have a well-
defined extremal limit but instead continues to oscillate.

DOI: 10.1103/PhysRevLett.118.011101

The periapsis advance has been one of the key observ-
ables used to benchmark theoretical models of binary
dynamics, comparing both between models and to obser-
vations. The anomalous rate of Mercury’s perihelion
advance had been a great source of mystery when, in
1915, it was explained by Einstein’s theory of general
relativity, thereby providing the first successful test of the
new theory [1]. Einstein’s calculation was done using a
weak field approximation appropriate for Mercury’s orbit.
Nowadays, the advent of gravitational wave astronomy
requires the modeling of highly relativistic binary systems
composed of compact objects such as black holes and
neutron stars, where the periapsis advance can be multiple
radians per orbit. Unfortunately, the nonlinear Einstein
equations do not allow for analytic solutions of the binary
dynamics. Instead, we have to rely on various approxima-
tion schemes, including post-Newtonian (PN) expansions
[2], expansion in the mass ratio [3], effective one-body
(EOB) models [4], and numerical discretization of the
nonlinear equation in numerical relativity (NR) [5].
Calculations in each scheme are highly complex and

have their own domain of validity. It is therefore of key
importance to be able to compare results between different
approximation schemes for both validation of the calcu-
lations and establishing where the various approximations
break down. This requires the calculation of coordinate-
invariant observables. The periapsis advance of nearly
circular orbits and the shift of the innermost stable circular
orbit (ISCO) are two such observables. In the case of
nonspinning binaries, these have previously been calcu-
lated and compared in Ref. [6] using a variety of different
methods including self-force, PN, EOB, and NR.
This Letter focuses on the dynamics of spinning binary

black holes with aligned spin and orbital angular momen-
tum (also known as “equatorial” binaries) in the limit that
one black hole is much more massive than the other. The

need for modeling such systems has recently been high-
lighted by the observation of GW150914 [7], which hinted
at the existence of a population of massive 30–50M⊙ black
holes, thereby raising the possibility of observing mergers
with relatively low mass ratios ∼1∶20, a regime where the
faithfulness of the current template banks may be ques-
tioned. Furthermore, binary mergers with even more
extreme mass ratios (1∶105) form a key science target
for future space-based gravitational wave observatories
such as LISA scheduled for launch in the early 2030s.
Ignoring the radiation reaction, equatorial binary systems

are characterized by two frequencies: the radial frequency
Ωr and the averaged azimuthal motion Ωϕ, defined by

Ωr ≔
2π

Pr
; Ωϕ ≔

�
dϕ
dt

�
t
; ð1Þ

where Pr is the period between two successive periapsis
passes observed by an asymptotic inertial observer in the
center-of-mass frame and h·it denotes averaging (with
respect to the asymptotic observer’s time t) over one radial
period Pr. These frequencies are coordinate-invariant
observables that can serve to identify a particular orbit.
In the limit of circular equatorial orbits, the relation
between W ≔ Ω2

r=Ω2
ϕ and Ωϕ is a coordinate invariant

that measures the periapsis advance and can be used to
compare between different calculation schemes. More
precisely, W is invariant only under a restricted class of
coordinate transformations and is therefore referred to as a
“quasi-invariant” (see [8]).
This Letter provides the first direct numerical calcula-

tions of the (exact) linear in mass ratio correction to W
around a spinning black hole using the gravitational self-
force (GSF) formalism (the nonspinning case was first
presented in Ref. [9]). These are compared to previous
estimates using PN and NR calculations. The high

PRL 118, 011101 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

6 JANUARY 2017

0031-9007=17=118(1)=011101(5) 011101-1 © 2017 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.118.011101
http://dx.doi.org/10.1103/PhysRevLett.118.011101
http://dx.doi.org/10.1103/PhysRevLett.118.011101
http://dx.doi.org/10.1103/PhysRevLett.118.011101


numerical precision of our calculations further allows us to
discriminate between two recent (and apparently incom-
patible) calculations of 4PN equations of motion for
nonspinning binaries [10–13]. Moreover, the calculation
of the periapsis shift at the ISCO allows us to calculate the
shift of the ISCO in a fully dynamical way independent of
any external assumptions. We compare this result to earlier
calculations of the ISCO shift [14] using the first law of
binary mechanics and the Hamiltonian GSF framework.
Finally, we study the limit of the ISCO shift for extremal
spins, revealing unexpected new phenomenology.
Formalism.—The basic scenario studied in this Letter

consists of a pair of black holes with masses m1 and m2,
where the mass ratio η ≔ m2=m1 is very small. The primary
black hole is allowed to have a spin jaj ¼ js1j=m2

1 < 1
aligned with the orbital angular momentum (negative
values of a indicate spin antialigned with the orbital angular
momentum). We further use geometrized units such
that G ¼ c ¼ 1.
The linear in mass ratio correction to W in the circular

orbit limit for nonspinning binaries was first studied in
Refs. [9,15]. Their analysis can straightforwardly be
extended to spinning binaries. Following Refs. [9,15],
the linear in mass ratio correction to the periapsis advance
is defined through

Wðη; a; ~ΩϕÞ ¼ Wð0; a; ~ΩϕÞ þ ηρða; ~ΩϕÞ þOðη2Þ; ð2Þ

where ~Ωϕ ¼ ðm1 þm2ÞΩϕ. The background value is
given by

Wð0; a; ~ΩϕÞ ¼ 1 − 6xþ 8ax3=2 − 3a2x2; ð3Þ

where x ≔ ð ~Ω−1
ϕ − aÞ−2=3, such that at leading order in ηwe

have the approximation x ≈m1=r with r the radius of the
background orbit.
Generalizing the derivation of Refs. [9,15] to Kerr

spacetime (utilizing key parts of the analysis done in
Refs. [9,16]), we obtain an expression for ρ in terms of
the gravitational self-force Fμ on slightly eccentric orbits:

ρða; ~ΩϕÞ ¼ lim
e→0

2
1 − 3xþ 2ax3=2

x

�
1

2x
Fr
1

−
1 − 3xþ 2ax3=2 þ a2x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6xþ 8ax3=2 − 3a2x2

p F1
ϕ

−
ax1=2 − 3xþ ax3=2 þ a2x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6xþ 8ax3=2 − 3a2x2

p aF1
t

−
1 − xð1þ 4ax1=2 − 4a2x2Þ

xð1 − 2xþ a2x2Þ Fr
0

�

þ 2xð1þ ax3=2Þð1 − ax1=2Þ2; ð4Þ

where e ≪ 1 is the eccentricity, and

Fr
0 ≔ hFrit; Fr

1 ≔
2

e
hcosðΩrtÞFrit;

F1
ϕ ≔

2

e
hsinðΩrtÞFϕit; F1

t ≔
2

e
hsinðΩrtÞFtit; ð5Þ

where Fμ and Fμ are co- and contravariant components,
respectively, of the gravitational self-force along the orbit
(see [17] for a brief review and conventions).
Another key coordinate-invariant observable is the shift

of the ISCO. This has previously been calculated for
spinning binaries in Ref. [14], which used a Hamiltonian
formulation of the conservative self-force dynamics and the
first law of binary mechanics [18–21] to extract the ISCO
shift from data for the redshift invariant on circular orbits. It
would be desirable to do an independent calculation of the
ISCO shift from the self-forced dynamics, as has previously
been done for nonspinning binaries [22].
In Refs. [9,15], it was observed (for nonspinning

binaries) that, since the ISCO is defined by the condition
that Ωr ¼ 0, calculating ρ at the ISCO was equivalent to
obtaining the ISCO shift. This remains true for spinning
binaries. If, following Refs. [14,15], we define

ð1þ ηÞΩISCO
ϕ ≔ Ω̆ISCO

ϕ ½1þ ηCΩðaÞ þOðη2Þ�; ð6Þ

where Ω̆ISCO
ϕ is the ISCO frequency in the background

spacetime, then observing that at the ISCO W ¼ 0, Eq. (2)
can be solved for CΩ to obtain

CΩðaÞ ¼
ρða; Ω̆ISCO

ϕ Þ
4xISCOð1þ ax3=2ISCOÞð1 − ax1=2ISCOÞ2

; ð7Þ

which generalizes Eq. (24) in Ref. [9]. This provides an
alternative method to Ref. [14] for calculating CΩ, which
has the advantage that it obtains the ISCO shift directly
from the orbital dynamics rather than first passing through
a Hamiltonian formulation (and any accompanying
assumptions).
Numerical method.—The gravitational self-force and

redshift are obtained numerically using the methods
described previously in [17] and [23], respectively. In
these, the local metric is reconstructed in a radiation gauge
from a solution of the Teukolsky equation using the
formalism of Chrzanowski, Cohen, and Kegeles [24–26].
The solutions of the Teukolsky equation are obtained to a
very high precision using a numerical implementation [27]
of the semianalytic method of Mano, Suzuki, and Takasugi
(MST) [28,29]. This procedure recovers the local metric
only up to perturbations to the mass and angular momen-
tum of the spacetime, which are recovered using the
analysis of Ref. [30].
The gravitational self-force is obtained from the radia-

tion gauge metric perturbation using the “no string gauge”
prescription of Ref. [31]. In this prescription, the gauge has
a discontinuity on a hypersurface containing the particle
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worldline. Consequently, the local time coordinate t is not
directly related to the time of an asymptotic inertial
observer, which makes the gauge unsuitable for calculating
the quasi-invariants sought in this Letter. A general
procedure for calculating quasi-invariants in this class on
arbitrary orbits using the no string prescription will be
given in Ref. [8]. The gist of that analysis is that it is
sufficient to determine the stationary axisymmetric part of
the gauge perturbation inside the particle orbit, which can
be fixed uniquely by generalizing the procedure of
Ref. [30] to require the continuity of all metric components
in a specified reference gauge.
Results.—We have calculated the periapsis shift ρða; ~ΩϕÞ

over a range of background orbits with spin a ranging from
−0.9 to 0.9 and Ωϕ ranging from 10−3 to ΩISCO

ϕ on a
logarithmic scale. The full numerical results are available as
Supplemental Material [32].
In Ref. [33], Le Tiec et al. provided an estimation of the

linear in mass ratio correction to the periapsis advance in
two ways: (i) using an (almost) 3.5 PN approximation and
(ii) by fitting to a series of NR simulations at a ¼ −0.5with
mass ratio η varying between 1∶1 and 1∶8. In Fig. 1, we
compare these estimates to our exact numerical result. At
low frequencies, the NR estimate performs really well,
agreeing with the exact result much better than should be
expected from the estimated error and also outperforming
the PN estimate. At higher frequencies, the NR estimate
loses accuracy and systematically underestimates ρ, and the
PN expression surprisingly gives a better approximation to
the exact result.
In the nonspinning (a ¼ 0) case, much more accurate PN

approximations for ρ (up to 9.5 PN) are available [34]. To
compare to these results, we prepared a dense set of
measurements of ρ in the range 10m1 < r < 1000m1,

accurate to 1 part in 1019 in the weak field. Figure 2 shows
the residuals from subtracting successive PN approximants,
ΔPNn ≔ jρGSF − ρPNnj. In the weak field, we see a con-
sistent improvement in the agreement as the PN order is
increased, serving as a validation both of the high order PN
approximants and of the high accuracy claimed for our
results.
Recently, there have been two independent derivations

[10–13] of the full 4PN equations of motion for non-
spinning binaries. Their results agree on almost all coef-
ficients of the PN expansion, except for a couple of linear in
mass ratio terms, which crucially lead different contribu-
tions to the periapsis advance. The results of Ref. [34] agree
with Refs. [10–12] but depend on filtering a PN expansion
of the redshift invariant through the first law of binary
mechanics and the EOB formalism. It is therefore of
interest to provide a completely independent estimate of
this coefficient that does not depend on any such theoretical
bridge. We do so by fitting a PN series of the form

ρðxÞ ¼
X∞
i¼2

ρicxi þ
X∞
j¼5

ρjhxjþ1=2 þ
X∞
k¼4

ρklxk logðxÞ

þ
X∞
n¼8

ρnl2xnlog2ðxÞ þ… ð8Þ

to our dense data set. If we make no other assumptions than
this functional form of the series, we find for the 4PN non-
log term ρ4c ¼ 64.5ð1Þ. The accuracy of this fit can be
increased by assuming exact values for the known PN
coefficients. Including values for the 3PN coefficients and
the 4 PN log term (that both calculations agree upon), we
find ρ4c ¼ 64.640 49ð8Þ. If we assume all PN coefficients
except ρ4c, taking the values given in Ref. [34], the
accuracy is further increased to ρ4c ¼ 64.640 564 757
116ð4Þ. This is in perfect agreement with the exact value

FIG. 1. Comparison of our (exact) numerical calculation of the
linear in mass ratio correction to the periapsis advance, ρGSF, to
previous NR ρNR and PN ρPN estimates at a ¼ −0.5 provided in
Ref. [33]. The inset shows the differences ΔNR ¼ jρNR − ρGSFj
and ΔPN ¼ jρPN − ρGSFj on a semi-log scale. The shade region
indicates the error on the NR estimate.

FIG. 2. Log-log plot of the residual differences ΔPNn ≔ jρGSF −
ρPNnj between our calculation of ρGSF at a ¼ 0 and successive PN
approximants ρPNn provided in Ref. [34]. The shaded area
indicates the estimated numerical error on the self-force result.
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given in Ref. [34] (and consequently [10–12]), which
equates to ρ4c ≈ 64.640 564 757 119….
We next calculate the ISCO shift. As mentioned above,

we have two independent ways of calculating the shift of
the ISCO: one using the GSF to calculate the periapsis
advance, taking the limit towards the ISCO, and using
Eq. (7); the other, described in Ref. [14], using data for the
redshift on circular orbits (which we calculate using the
implementation of Ref. [23]). Figure 3 plots the results of
both calculations finding excellent agreement (5–6 digits,
consistent with a numerical error). This result bolsters the
credence of the ingredients used in the method of Ref. [14],
including the first law of binary mechanics.
Figure 3 also extends the results of Ref. [14] (which

covered spins −0.9 < a < 0.9) to much higher spins
approaching extremality. This calculation was done solely
using the redshift method, which is faster by at least an
order of magnitude due to needing only data on circular
orbits. The calculation is further aided by simplifications of
the MST method in the near-horizon near-extremal Kerr
(NHNEK) limit [27]. This calculation reveals a much richer
structure than implied by Ref. [14]. Shortly after a ¼ 0.9,
the ISCO shift reaches a maximum, after which it decreases
to another minimum to ultimately appear to monotonically
approach a limit value C1. This limit value may be traced
back to coming solely from mass and angular momentum
perturbation contributions to the redshift. Consequently,
it may be calculated analytically [35] to obtain
C1 ¼ 1þ 1=ð2 ffiffiffi

3
p Þ. However, on closer examination of

the NHNEK limit we find that CΩ continues to oscillate
around this limit value with an amplitude of the order of
∼10−5. Similar oscillations as a function of δa ¼ 1 − a
have previously been observed in calculations of other
observable quantities in the NHNEK limit, including the

quasinormal-mode frequencies [36] and gravitational wave
flux [37]. Yet, the author is unaware of any intuitive
geometrical explanation of their probable common origin.
Discussion.—In this Letter, we have produced the first

direct calculation of invariant observables (periapsis
advance and ISCO shift) sensitive to the conservative part
of the gravitational self-force on eccentric orbits of spin-
ning binaries. We expect these to be key benchmarks for the
coming years in improving modeling for eccentric spinning
binaries and, in particular, in the push for getting more
faithful models at lower mass ratios. This benchmark
function has been demonstrated by discriminating between
two competing derivations of the 4 PN equations of motion
for nonspinning binaries.
The calculation of the ISCO shift has been compared

with earlier calculations [14] based on the calculation of the
redshift on circular orbits. The excellent agreement serves
as a verification of some of the novel elements of our
calculation such as the gauge completion of the radiation
gauge results. Moreover, it provides a validation of the
theoretical underpinnings of Ref. [14]. In particular, it
validates the first law of binary mechanics in a regime
where it has not been tested.
The examination of the ISCO shift in the near-extremal

regime has revealed interesting new phenomenology. In
particular, the oscillation of the ISCO shift as the spin
approaches extremality seems interesting, as it implies that
the ISCO shift does not have a proper extremal limit. These
oscillations beg for an explanation, either in terms of the
extremal spacetime geometry or in terms of a Kerr/CFT
dual [38,39].
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