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Virtually every organism gathers information about its noisy environment and builds models from those
data, mostly using neural networks. Here, we use stochastic thermodynamics to analyze the learning of a
classification rule by a neural network. We show that the information acquired by the network is bounded
by the thermodynamic cost of learning and introduce a learning efficiency η ≤ 1. We discuss the conditions
for optimal learning and analyze Hebbian learning in the thermodynamic limit.
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Introduction.—Information processing is ubiquitous in
biological systems, from single cells measuring external
concentration gradients to large neural networks perform-
ing complex motor control tasks. These systems are
surprisingly robust, despite the fact that they are operating
in noisy environments [1,2], and they are efficient: E. coli, a
bacterium, is near perfect from a thermodynamic perspec-
tive in exploiting a given energy budget to adapt to its
environment [3]. Thus, it is important to keep energetic
considerations in mind for the analysis of computations in
living systems. Stochastic thermodynamics [4,5] has
emerged as an integrated framework to study the interplay
of information processing and dissipation in interacting,
fluctuating systems far from equilibrium. Encouraged by a
number of intriguing results from its application to bacterial
sensing [6–15] and biomolecular processes [16–20], here
we consider a new problem: learning.
Learning is about extracting models from sensory data.

In living systems, it is implemented in neural networks
where vast numbers of neurons communicate with each
other via action potentials, the electric pulse used univer-
sally as the basic token of communication in neural systems
[21]. Action potentials are transmitted via synapses, and
their strength determines whether an incoming signal will
make the receiving neuron trigger an action potential of its
own. Physiologically, the adaptation of these synaptic
strengths is a main mechanism for memory formation.
Learning task and model.—A classic example for

neurons performing associative learning is the Purkinje
cells in the cerebellum [22,23]. We model such a neuron as
a single-layer neural network or perceptron [24,25], well
known from machine learning and statistical physics [26].
The neuron makes N connections to other neurons and is
fully characterized by the weights or synaptic strengths
ω ∈ RN of these connections, see Fig. 1. The neuron must
learn whether it should fire an action potential or not for a
set of P fixed input patterns or samples ξμ ¼ ðξμ1;…; ξμNÞ,
μ ¼ 1; 2;…; P. Each pattern describes the activity of all the
other connected neurons at a point in time: if the nth
connected neuron is firing an action potential in the pattern

ξμ, then ξμn ¼ 1. For symmetry reasons, we set ξμn ¼ −1 in
case the nth neuron is silent in the μth pattern. Every
sample ξμ has a fixed true label σμT ¼ �1, indicating
whether an action potential should be fired in response
to that input or not. These labels are independent of each
other and equiprobable; once chosen, they remain fixed.
We model the label predicted by a neuron for each input

ξμ with a stochastic process σμ ¼ �1 (right panel in Fig. 1).
Assuming a thermal environment at fixed temperature T,
the transition rates k�μ for these processes obey the detailed
balance condition

kþμ =k−μ ¼ exp ðAμ=kBTÞ; ð1Þ

where kB is Boltzmann’s constant and Aμ is the input-
dependent activation

Aμ ≡ 1ffiffiffiffi
N

p ω · ξμ; ð2Þ

FIG. 1. Model of a single neuron. Given a set of inputs ξμ ∈
f�1gN and their true labels σμT ¼ �1 (left), the neuron learns the
mappings ξμ → σμT by adjusting its weights ω ∈ RN . It processes
an input by computing the activation Aμ ¼ ω · ξμ=

ffiffiffiffi
N

p
, which

determines the transition rates of a two-state random process
σμ ¼ �1 indicating the label predicted by the neuron for each
sample, shown here for μ ¼ 1.
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where the prefactor ensures the conventional normalization.
We interpret pðσμ ¼ 1jωÞ with fixed ξμ as the probability
that the μth input would trigger an action potential by the
neuron. The goal of learning is to adjust the weights of the
network ω such that the predicted labels at any one time
σ ¼ ðσ1;…; σPÞ equal the true labels σT ¼ ðσ1T;…; σPTÞ for
as many inputs as possible.
Let us introduce the concept of learning efficiency by

considering a network with a single weight learning one
sample ξ ¼ �1 with label σT , i.e., N ¼ P ¼ 1. Here and
throughout this Letter, we set kB ¼ T ¼ 1 to render energy
and entropy dimensionless. The weight ωðtÞ obeys an
overdamped Langevin equation [28]

_ωðtÞ ¼ −ωðtÞ þ f(ωðtÞ; ξ; σT; t)þ ζðtÞ: ð3Þ
The total force on the weight arises from a harmonic
potential VðωÞ ¼ ω2=2, restricting the size of the weight
[29], and an external force fð·Þ introducing correlations
between weight and input. The exact form of this “learning
force” fð·Þ depends on the learning algorithm we choose.
The thermal noise ζðtÞ is Gaussian with correlations
hζðtÞζðt0Þi ¼ 2δðt − t0Þ. Here and throughout, we use
angled brackets to indicate averages over noise realizations,
unless stated otherwise. We assume that initially at t0 ¼ 0,
the weight is in thermal equilibrium, pðωÞ ∝ expð−ω2=2Þ,
and the labels are equiprobable, pðσTÞ ¼ pðσÞ ¼ 1=2.
Choosing symmetric rates,

k� ¼ γ expð�A=2Þ; ð4Þ
the master equation [28] for the probability distribution
pðσT;ω; σ; tÞ with given ξ reads

∂tpðσT;ω; σ; tÞ ¼ −∂ωjωðtÞ þ jσðtÞ; ð5Þ

where ∂t ≡ ∂=∂t, etc., and
jωðtÞ ¼ ½−ωþ fðω; ξ; σT; tÞ − ∂ω�pðσT;ω; σ; tÞ; ð6aÞ

jσðtÞ ¼ kσpðσT;ω;−σ; tÞ − k−σpðσT;ω; σ; tÞ ð6bÞ

are the probability currents for the weight and the predicted
label, respectively. In splitting the total probability current
for the system ðσT;ω; σÞ into the currents (6), we have used
the bipartite property of the system, i.e., that the thermal
noise in each subsystem (ω and σ), is independent of the
other [31,32]. We choose γ ≫ 1, i.e., introduce a time-scale
separation between the weights and the predicted labels,
since a neuron processes a single input much faster than it
learns.
Efficiency of learning.—The starting point to consider

both the information-processing capabilities of the neuron
and its nonequilibrium thermodynamics is the Shannon
entropy of a random variable X with probability distribu-
tion pðxÞ,

SðXÞ≡ −
X
x∈X

pðxÞ lnpðxÞ; ð7Þ

which is a measure of the uncertainty of X [33]. This
definition carries over to continuous random variables,
where the sum is replaced by an integral. For dependent
random variables X and Y, the conditional entropy of X
given Y is given by SðXjYÞ≡ −

P
x;ypðx; yÞ lnpðxjyÞ,

where pðxjyÞ ¼ pðx; yÞ=pðyÞ. The natural quantity to
measure the information learned is the mutual information

IðσT∶σÞ≡ SðσTÞ − SðσT jσÞ; ð8Þ

which measures by how much, on average, the uncertainty
about σT is reduced by knowing σ [33]. To discuss the
efficiency of learning, we need to relate this information to
the thermodynamic costs of adjusting the weight during
learning from t0 ¼ 0 up to a time t, which are given by the
well-known total entropy production [4] of the weight,

ΔStotω ≡ ΔSðωÞ þ ΔQ: ð9Þ
Here, ΔQ is the heat dissipated into the medium by the
dynamics of the weight and ΔSðωÞ is the difference in the
Shannon entropy (7) of the marginalized distribution
pðω; tÞ ¼ P

σT ;σpðσT;ω; σ; tÞ at times t0 and t, respec-
tively. We will show that in feedforward neural networks
with Markovian dynamics (5) and (6), the information
learned is bounded by the thermodynamic costs of learning

IðσT∶σÞ ≤ ΔSðωÞ þ ΔQ ð10Þ
for arbitrary learning algorithm fðω; ξ; σT; tÞ at all times
t > t0. This inequality is our first result. We emphasize that
while relations between changes in mutual information and
total entropy production have appeared in the literature
[31,32,34–36], they usually concern a single degree of
freedom, say X, in contact with some other degree(s) of
freedom Y, and relate the change in mutual information
IðX∶YÞ due to the dynamics of X to the total entropy
production of X. Instead, our relation connects the entropy
production in the weights with the total change in mutual
information between σT and σ, which is key for neural
networks. Our derivation [37] builds on recent work by
Horowitz [32] and can be generalized to N dimensions and
P samples, see Eq. (16) below. Equation (10) suggests to
introduce an efficiency of learning

η≡ IðσT∶σÞ
ΔSðωÞ þ ΔQ

≤ 1: ð11Þ

Toy model.—As a first example, let us calculate the
efficiency of Hebbian learning, a form of coincidence
learning well known from biology [21,39], for N¼P¼1
in the limit t → ∞. If the neuron should fire an action
potential when its input neuron fires, or if they should both
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stay silent, i.e., ξ ¼ σT ¼ �1, the weight of their con-
nection increases—“fire together, wire together.” For sym-
metry reasons, the weight decreases if the input neuron is
silent but the neuron should fire and vice versa, ξ ¼ −σT .
This rule yields a final weight proportional to F ≡ σTξ, so
to minimize dissipation [40], we choose a learning force f
linearly increasing with time

fðω; ξ; σT; tÞ≡
�
νF t=τ; t ≤ τ;

νF ; t > τ;
ð12Þ

where we have introduced the learning duration τ > 0 and
the factor ν > 0 is conventionally referred to as the learning
rate in the machine learning literature [24]. The total
entropy production (9) can be computed from the distri-
bution pðσT;ω; tÞ, which is obtained by first integrating σ
out of Eqs. (5) and (6) and solving the resulting Fokker-
Planck equation [41]. The total heat dissipated into the
medium ΔQ is given by [4]

ΔQ ¼
Z

∞

0

dt
Z

∞

−∞
dωjωðtÞ½−ωðtÞ þ f(ωðtÞ; ξ; σT; t)�

¼ ν2F 2ðe−τ þ τ − 1Þ
τ2

: ð13Þ

As expected, no heat is dissipated in the limit of infinitely
slow driving, limτ→∞ΔQ ¼ 0, while for a sudden potential
switch τ → 0, limτ→0ΔQ ¼ ν2F 2=2. The change in the
Shannon entropy ΔSðωÞ is computed from the margin-
alized distribution pðω; tÞ ¼ P

σT
pðσT;ω; tÞ. Finally, the

mutual information (8) can be computed from the sta-
tionary solution of Eq. (5).
A plot of the efficiency (11), Fig. 2, highlights the two

competing requirements for maximizing η. First, all the
information from the true label SðσTÞ ¼ ln 2 needs to be
stored in the weight by increasing the learning rate ν, which
leads to ΔSðωÞ → ln 2 and a strongly biased distribution
pðσjωÞ such that IðσT∶σÞ → ln 2. Second, we need to
minimize the dissipated heat ΔQ, which increases with ν,
by driving the weight slowly, τ ≫ 1.
More samples, higher dimensions.—Moving on to a

neuron with N weights ω learning P samples with true
labels σT ≡ ðσ1T;…; σμT;…; σPTÞ, we have a Langevin equa-
tion for each weight ωn with independent thermal noise
sources ζnðtÞ such that hζnðtÞζmðt0Þi ¼ 2δnmδðt − t0Þ for
n;m ¼ 1;…; N. Two learning scenarios are possible. In
batch learning, the learning force is a function of all
samples and their labels,

_ωnðtÞ ¼ −ωnðtÞ þ f(ωnðtÞ; fξμn; σμTg; t)þ ζnðtÞ: ð14Þ

A more realistic scenario from a biological perspective is
on-line learning, where the learning force is a function of
only one sample and its label at a time,

_ωnðtÞ ¼ −ωnðtÞ þ f(ωnðtÞ; ξμðtÞn ; σμðtÞT ; t)þ ζnðtÞ: ð15Þ

The sample and label that enter this force are given by
μðtÞ ∈ f1;…; Pg, which might be a deterministic function
or a random process. Either way, the weights ω determine
the transition rates of the P independent two-state processes
for the predicted labels σ ≡ ðσ1;…; σμ;…; σPÞ via Eqs. (1)
and (2). Again, we assume that the thermal noise in each
subsystem, ωn or σμ, is independent of all the others, and
choose initial conditions at t0 ¼ 0 to be pðωÞ ∝ expð−ω ·
ω=2Þ and pðσμTÞ ¼ pðσμÞ ¼ 1=2. The natural quantity to
measure the amount of learning after a time t in both
scenarios is the sum of IðσμT∶σμÞ over all inputs. We can
show [37] that this information is bounded by the total
entropy production of all the weights,

XP
μ¼1

IðσμT∶σμÞ ≤
XN
n¼1

½ΔSðωnÞ þ ΔQn� ¼
XN
n¼1

ΔStotn ; ð16Þ

where ΔQn is the heat dissipated into the medium by the
nth weight and ΔSðωnÞ is the change from t0 to t in the
Shannon entropy (7) of the marginalized distribution
pðωn; tÞ. This is our main result.
Let us now compute the efficiency of on-line Hebbian

learning in the limit t → ∞. Since a typical neuron will
connect to ∼1000 other neurons [21], we take the thermo-
dynamic limit by letting the number of samples P and the
number of dimensions N both go to infinity while simulta-
neously keeping the ratio

α≡ P=N ð17Þ

FIG. 2. Learning efficiency of a neuron with a single weight.
We plot the efficiency η (11) for a neuron with a single weight
learning a single sample as a function of the learning rate ν and
learning duration τ in the limit t → ∞.
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on the order of 1. The samples ξμ are drawn at random from
pðξμn ¼ 1Þ ¼ pðξμn ¼ −1Þ ¼ 1=2 and remain fixed [42]. We
choose a learning force on the nth weight of the form (12)
with F → F n and assume that the process μðtÞ is a random
walkover the integers1;…; P changing ona time scalemuch
shorter than the relaxation time of the weights. Since f2 is
finite, the learning force is effectively constant with

F n ¼
1ffiffiffiffi
N

p
XP
μ¼1

ξμnσ
μ
T; ð18Þ

where the prefactor ensures the conventional normalization
[24]. Hence, all theweightsωn are independent of each other
and statistically equivalent. Averaging first over the noise
with fixed σT , we find that ωn is normally distributed with
mean hωni ¼ νF n and variance 1 [43]. The average with
respect to the quenched disorder σT, which we shall indicate
by an overline, is taken second by noting thatF n is normally
distributed by the central limit theorem with F n ¼ 0 and

F 2
n ¼ α; hence, hωni ¼ 0 and hω2

ni ¼ 1þ αν2. The change
in the Shannon entropy of the marginalized distribution
pðωnÞ is hence ΔSðωnÞ ¼ lnð1þ αν2Þ. Likewise, the heat
dissipated by the nth weight ΔQn is obtained by averaging
Eq. (13) over F → F n.
The mutual information IðσμT∶σμÞ is a functional of the

marginalized distribution pðσμT; σμÞ, which can be obtained
by direct integration of pðσT;ω; σÞ [37]. Here, we will
take a simpler route starting from the stability of the μth
sample [44]

Δμ ≡ 1ffiffiffiffi
N

p ω · ξμσμT ¼ AμσμT: ð19Þ

Its role can be appreciated by considering the limit T → 0,
where it is easily verified using the detailed balance
condition (1) that the neuron predicts the correct label if
and only if Δμ > 0. For T ¼ 1, the neuron predicts the μth
label correctly with probability

pμ
C ≡ pðσμ ¼ σμTÞ ¼

Z
∞

−∞
dΔμpðΔμÞ eΔ

μ

eΔ
μ þ 1

; ð20Þ

where pðΔμÞ is the distribution generated by thermal noise
and quenched disorder, yielding a Gaussian with mean ν and
variance 1þ αν2 [37]. The mutual information follows as

IðσμT∶σμÞ ¼ ln 2 − Sðpμ
CÞ ð21Þ

with the shorthand for the entropy of a binary random
variable SðpÞ ¼ −p lnp − ð1 − pÞ lnð1 − pÞ [33]. It is
plotted in Fig. 3 together with the mutual information
obtained by Monte Carlo integration of pðσT;ω; σÞ with
N ¼ 10000. For a vanishing learning rate ν → 0 or infinitely
many samples α → ∞,pμ

C → 1=2 and hence IðσμT∶σμÞ → 0.
The maximum value IðσμT∶σμÞ ¼ ln 2 is only reached for

small α and decreases rapidly with increasing α, even for
values of α where it is possible to construct a weight vector
that classifies all the samples correctly [25]. This is a
consequence of both the thermal noise in the system and
the well-known failure of Hebbian learning to use the
information in the samples perfectly [24]. We note that
while the integral in Eq. (20) has to be evaluated numerically,
pμ
C can be closely approximated analytically by pðΔμ > 0Þ

with the replacement ν → ν=2 [37] (dashed lines in Fig. 3).
Together, these results allow us to define the efficiency ~η

of Hebbian learning as a function of just α and ν,

~η≡ α
IðσμT∶σμÞ

ΔSðωnÞ þ ΔQn
; ð22Þ

where we have taken the mutual information per sample
and the total entropy production per weight, multiplied by
the number of samples and weights, respectively. Plotted in
the inset of Fig. 3, this efficiency never reaches the optimal
value 1, even in the limit of vanishing dissipation τ → ∞
(solid lines in Fig. 3).
Conclusion and perspectives.—We have introduced

neural networks as models for studying the thermodynamic
efficiency of learning. For the paradigmatic case of learning
arbitrary binary labels for given inputs, we showed that the
information acquired is bounded by the thermodynamic
cost of learning. This is true for learning an arbitrary
number of samples in an arbitrary number of dimensions
for any learning algorithm without feedback for both batch
and on-line learning.
Our framework opens up numerous avenues for further

work. It will be interesting to analyze the efficiency of

FIG. 3. Hebbian learning in the thermodynamic limit. We plot
the mutual information between the true and predicted label of a
randomly chosen sample (21) in the limit t → ∞ with N;P → ∞
as a function of α≡ P=N, computing pμ

C from Eq. (20) (solid
lines) and by Monte Carlo integration of pðσT ;ω; σÞ (crosses; the
error bars indicate 1 standard deviation). The inset shows the
learning efficiency (22) in the limits τ → 0 (solid) and τ → ∞
(dashed). In both plots, ν increases from bottom to top.
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learning algorithms that employ feedback or use an
auxiliary memory [45]. Furthermore, synaptic weight
distributions are experimentally accessible [46,47], offering
the exciting possibility to test predictions on learning
algorithms by looking at neural weight distributions. The
inverse problem, i.e., deducing features of learning algo-
rithms or the neural hardware that implements them by
optimizing some functional like the efficiency, looks like a
formidable challenge, despite some encouraging progress
in related fields [48,49].

We thank David Hartich for stimulating discussions and
a careful reading of the Letter.
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