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We report on a novel dynamic phase in electrical networks, in which current channels perpetually change
in time. This occurs when the elementary units of the network are fuse-antifuse devices, namely, become
insulators within a certain finite interval of local applied voltages. As a consequence, the macroscopic
current exhibits temporal fluctuations which increase with system size. We determine the conditions under
which this exotic situation appears by establishing a phase diagram as a function of the applied field and the
size of the insulating window. Besides its obvious application as a versatile electronic device, due to its rich
variety of behaviors, this network model provides a possible description for particle-laden flow through
porous media leading to dynamical clogging and reopening of the local channels in the pore space.
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Fluid flow through a porous medium is frequently
described in terms of a complex network system of
steady-state flow channels, which are more or less tortuous
depending on the strength of the disorder [1,2]. Preferential
channeling in these systems is a result of minimizing the
dissipated energy or flow resistance and is thus typically
unique. When the fluid erodes and deposits material,
however, the clogging and reopening of channels depends
on the evolution of local conditions. We will show here
using an electrical analog model that, under certain con-
ditions, a new itinerant state can be attained in which these
preferential channels constantly change their locations.
A plausible electrical analog for this complex fluid

dynamical system is a network in which each link contains
a reversible fuse-antifuse device [3–7], as described in
Fig. 1(a). In an electrical circuit, a typical fuse behaves as a
conductor if the voltage drop is below a given threshold vI
and becomes irreversibly an insulator otherwise. In the case
of an antifuse, if the voltage drop exceeds a threshold vC, its
behavior changes abruptly from an insulator to a conductor.
This type of switch has been widely used in programmable
elements, in order to configure logic circuits and create
customized designs [3,4]. As depicted in Fig. 1(b), more
sophisticated devices, like programmable read-only memo-
ries [5], can intrinsically couple in their bits both fuse and
antifuse behaviors in a reversible fashion, which are trig-
gered one or another depending on the applied potential
drop [5,8,9].
As shown in Fig. 1, our electrical analog model for

particulate transport in a fluid flowing through a clogging-
reopening pore space consists of a regular lattice where
each link is a reversible fuse-antifuse device. More pre-
cisely, as described in Fig. 1(a), these elementary units have
the same conductance g ¼ 1 while in the conducting state,
namely for v < vI and v > vC, but are associated to

randomly distributed insulating and conducting threshold
voltages, vI and vC, respectively [10–18]. The values of vI
are chosen from a uniform distribution in the interval
½ϵ; ϵþ Δ�, with ϵ ¼ 0.10 and Δ ¼ 0.1 or Δ ¼ 1.0. The
conducting threshold is defined as vC ¼ svI , where s is a
model parameter describing how much the insulating and

FIG. 1. (a) The I-V behavior of the fuse-antifuse channel
driven by a voltage drop v. If the voltage drop v is below the
insulating threshold vI , the channel has unitary conductance. If
vI < v < vC, the channel is an insulator, and its conductance is
set to zero. Finally, if the voltage drop is above the conducting
threshold vC, the channel is recovered with unitary conductance.
(b) Representation of the fuse-antifuse network with each site of
the lattice connected with nearest neighbors through a fuse-
antifuse channel and connected to the ground through a link of
high resistance R ≫ 1.
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conducting events are separated. Moreover, all sites of the
lattice, except those at which the overall voltage drop is
applied, are connected to the ground through a link of very
high resistivity, R ≫ 1. Therefore, sites that become even-
tually isolated during the dynamics will have zero potential.
We performed simulations with an initially filled tilted

square lattice and apply a voltage drop V across it. Next, at
each step, we solve Kirchhoff’s law [19] on each site in
order to determine the voltage drop vk on each bond k.
After determining vk, we proceed to identify which bonds
will be insulators or conductors, by calculating for each
bond the ratio,

Rk ¼
jvkj
vI

: ð1Þ

Any bond k with 1 < Rk < s will be removed, that is, will
have its conductivity set to zero in the following step. Note
that this removal is reversible, that is, if the voltage drop
between the end points of a removed bond changes and Rk
becomes larger than s, the bond will be recovered to the
system with original conductivity. Since the removal or
recovery process is synchronous, that is, several bonds may
change state at the same step, it is possible that entire regions
of the system disconnect from both terminals. In this case,
the potential in these regions becomes zero. Here, a time unit
is defined in terms of a model iteration in which Kirchhoff’s
law is simultaneously solved for all sites. After the corre-
sponding voltage drops are computed, we can further
identify which ones remain as insulators or conductors.

A snapshot of the system at the steady state of the itinerant
phase is shown in Fig. 2, where the bonds represent
conducting channels colored according to their associated
values of electrical currents. In order to quantify the macro-
scopic behavior of the system, we calculate the global
conductanceG ¼ P

kvkgk=V, whereV is the global voltage
drop applied to the system, the summation stands for all
fuse-antifuse elements along any line perpendicular to the
directionwhereV is applied, and gk is the conductance of the
kth bond, here considered unitary.
Next, we consider the dependence of the global conduct-

ance G on the parameter space, defined in terms of the
variables V × s. As shown in Fig. 3, the time dependence of
the conductance G can exhibit a rich variety of behaviors,
depending on the applied voltage drop V. By fixing the
values of Δ ¼ 0.10, s ¼ 12.8, and L ¼ 128, for sufficiently
low (V ¼ 26) and high (V ¼ 1024) values of the voltage
drop, since all elements of the network remain in the
conducting state, the system operates under an invariant
and maximal conductance, Gmax ¼ 1. For V ¼ 32 and 64,
the fuse-antifuse elements can dynamically change from
insulators to conductors and vice versa in the network. As a
consequence, after a transient period, the conductance is
always finite,G > 0, but fluctuates around an approximately
constantmeanvalue. ForV ¼ 256,G exhibits periodic peaks
ofmaximal conductance at a frequency that is proportional to
L−1. Finally, for a larger voltage drop, V ¼ 512, fluctuations
are again observed in G, but now with episodes of insulator
behavior,G¼0, due to eventual losses of global connectivity.

FIG. 2. Typical snapshot of the itinerant phase of the system at
steady state, for a tilted square lattice with L ¼ 96, voltage drop
V ¼ 192 applied from top to bottom, and periodic boundary
conditions from left to right. We used Δ ¼ 0.1 and s ¼ 384.
Isolating bonds are represented in brown while conducting bonds
are colored according to the their local current intensity, from
blue to red corresponding to low and high values, respectively.

FIG. 3. The time dependence of the global conductance G. By
fixing the values of Δ ¼ 0.10, s ¼ 12.8, and L ¼ 128, for
sufficiently low (V ¼ 26) and high (V ¼ 1024) values of the
voltage drop, all elements of the network remain in the con-
ducting state. For V ¼ 32 and 64, the conductance is always
finite, G > 0, but fluctuates around mean values. For V ¼ 256, G
exhibits periodic peaks of maximal conductance at a frequency
that is proportional to L−1. Finally, for a larger voltage drop,
V ¼ 512, fluctuations are again observed in G, but now with
episodes of insulator behavior, G ¼ 0, due to eventual losses of
global network connectivity.
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In Fig. 4, we show the phase diagram for the case
Δ ¼ 0.10, in terms of the scaled parameters VL−1 and
sL−1. Four phases can be clearly identified. If the voltage
drop is sufficiently small (V < Va) or sufficiently high
[V > VeðsÞ], all connections conduct and the system pre-
serves itsmaximal conductance. This behavior characterizes
the full metallic phase. Moreover, the voltage drop VaL−1 is
independent on s, depending only on the distribution of
thresholds. Next, if the voltage drop is in the range
Va < V < VbðsÞ, the system is in the insulating phase
(green in Fig. 4), where the global conductance at steady

state is zero, since a spanning percolation cluster of
conducting fuse-antifuse elements is not present. When
the voltage drop is in the range VbðsÞ<V <VeðsÞ, insulat-
ing and conducting events occur, and we observe fluctua-
tions in the global conductance. This characterizes the
itinerant phase, which is divided in periodic (yellow) and
nonperiodic regimes (brown). The periodic regime is
bounded by the potentials VcðsÞ and VdðsÞ, and the global
conductance oscillates between zero and its maximal value,
Gmax ¼ 1.0, with frequency equals to L−1. All voltages Va,
Vb, Vc, Vd, and Ve increase linearly with system size. In
Fig. 5, we show snapshots of steady-state configurations for
three regions of the phase diagram. While for the non-
periodic itinerant phase the system percolates along the
direction where the voltage drop is applied, with different
levels of connectivity [see Figs. 5(a) and 5(b)], for the
insulating phase the largest cluster does not percolate [see
Fig. 5(c)].
In order to analyze the steady state of the itinerant phase,

we measure the relative fluctuation of G,

ΔG ¼ hG2i − hGi2
hGi2 ; ð2Þ

which scales with the system size as, ΔG ∼ L−θ, where the
exponent θ determines the degree of self-averaging. If
θ ¼ d, with d being the dimension of the lattice, the quantity
measured is strongly self-averaging. If 0 < θ < d, the
quantity is self-averaging, and if θ ¼ 0, the quantity lacks
self-averaging [20–29]. As shown in Fig. 6, the weighted
nonlinear least-squares fits of power laws to the data sets of
ΔG againstL results in θ ¼ 2.16� 0.02 and 6.54� 0.03 for
Δ ¼ 0.1 and 1.0, respectively.

(a) (b) (c)

FIG. 5. Snapshots for different phases of a system with L ¼ 64.
The largest cluster is represented in red. (a) The nonperiodic
itinerant phase (below the periodic regime) with VL−1 ¼ 0.5 and
sL−1 ¼ 0.1, where the system is highly connected. (b) The
nonperiodic itinerant phase (above the periodic regime) with
VL−1 ¼ 2.0 and sL−1 ¼ 0.1, where the system is weakly con-
nected. (c) The insulating phase, where the largest cluster
does not percolate along the direction where the voltage drop
is applied.

FIG. 4. The phase diagram of the fuse-antifuse networks for
Δ ¼ 0.10. The diagram is presented in terms of the scaled voltage
drop VL−1 and the scaled parameter sL−1. Four phases can be
identified. If the voltage drop is sufficiently small (V < Va) or
sufficiently high [V > VeðsÞ], the system is in the full metallic
phase (blue). If the voltage drop is Va ≤ V < VbðsÞ, the system is
in the insulating phase (green). When the voltage drop is in the
range VbðsÞ ≤ V < VeðsÞ, the system is in the itinerant phase,
which is divided in periodic and nonperiodic regimes. The
periodic regime is bounded by the potentials VcðsÞ and VdðsÞ.
All voltages Va, Vb, Vc, Vd, and Ve grow linearly with
system size.

FIG. 6. Logarithmic plot showing the size dependence of the
relative fluctuation ΔG of the current for Δ ¼ 0.10 and s ¼ 12.
For each data point, we consider 105 time steps at steady state
averaged over 100 samples. The weighted nonlinear least-squares
fit to the data of a power law, ΔG ∼ L−θ, gives the exponent
θ ¼ 2.16� 0.02, corresponding to a strongly self-averaging
behavior [20]. For Δ ¼ 1.0, we obtain θ ¼ 6.54� 0.03.
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Along the line V ¼ Va of the phase diagram, as we
increase the parameter sL−1, the system undergoes a phase
transformation from the itinerant (nonperiodic) to the
insulating phase (the horizontal dashed line in Fig. 4). In
order to characterize this transformation, we analyze the
global conductance and its fluctuations near the transition
point between the phases, by fixing V ¼ Va and changing
the parameter sL−1. In the main plot of Fig. 7, we show the
data collapse of the global conductance as a function of
sL−1, consideringL ¼ 32, 48, 64, and 96. Each data point is
measured at steady state during 105 time steps and averaged
over 100 samples. The best data collapse is obtained using
the exponent β ¼ 0.58. The results shown in Fig. 7 suggest
that the fuse-antifuse model undergoes a continuous
transition from an itinerant to an insulating phase, at a
specific scale invariant value scL−1. This is corroborated
by the results presented in the inset of Fig. 7, wherewe show
the data collapse of the weighted variance χG, with
χG ¼ NðhG2i − hGi2Þ, using the exponent γ ¼ 1.70.
In summary, we have introduced a fuse-antifuse network

model which exhibits a regime of itinerant conductivity. At
fixed external potential, the conductance spontaneously
fluctuates with an amplitude that increases with system
size. This novel itinerant regime is in some sense similar to
the dynamics of braiding rivers [30] and might help to
understand flicker noise [31–33] and similar phenomena
where spontaneous macroscopic fluctuations appear.
Concerning the eroding and depositing fluid flowing
through a porous medium, very recent experiments do

indeed seem to show, under certain conditions, intermit-
tently fluctuating permeabilities [34].
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