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Diffusive shock acceleration (DSA) of ions occurs due to pitch-angle diffusion in the upstream and
downstream regions of the shock and multiple crossing of the shock by these ions. The classical DSA
theory implies continuity of the distribution at the shock transition and predicts a universal spectrum of
accelerated particles, depending only on the ratio of the upstream and downstream fluid speeds. However,
the ion dynamics at the shock front occurs within a collision-free region and is gyrophase dependent. The
ions fluxes have to be continuous at the shock front. The matching conditions for the gyrophase-averaged
distribution functions at the shock transition are formulated in terms of the transition and reflection
probabilities. These probabilities depend on the shock angle and the magnetic compression as does the
power spectrum of accelerated ions. Their spectral index is expressed in terms of the reflectivity. The
spectrum is typically harder than the spectrum predicted by the classical DSA theory.

DOI: 10.1103/PhysRevLett.117.275101

Introduction.—Collisionless shocks are known to be
very efficient charged-particle accelerators [1–9]. During
the course of the acceleration, the charged particles are
scattered by magnetic irregularities in the upstream and
downstream regions and cross the shock front many
times [see, e.g., Ref. [10]. Sufficiently far from the shock
transition, it is reasonable to consider the gyrophase-
averaged particle distributions and describe their evolution
in terms of pitch-angle diffusion [11]. If the shock
transition is gradual, the diffusive approximation may be
valid throughout (see, e.g., Ref. [12]). It has been shown
that the drifts in the macroscopic fields of the shock have to
be taken into account, even in the diffusive approximation
[13,14]. However, typically, the shock transition is narrow.
Since the mean free path of the particles, with respect to
collisions with magnetic irregularities, is much larger than
the shock width and the ion gyroradius, the ion dynamics at
the shock crossing is collision free [5,12,15]. The spectrum
of the accelerated particles is determined by the matching
conditions at the shock front [6,7]. These conditions relate
the upstream and downstream distributions, which should
otherwise satisfy the upstream and downstream diffusion-
convection equations. In parallel shocks, where the mag-
netic field does not change throughout the shock, the
matching conditions reduce to the continuity requirement
of the distribution function (see, e.g., Ref. [16]), since ions
cross the shock freely in the absence of the magnetic field
change. For weakly anisotropic distributions, the distribu-
tion function continuity requirement leads to the universal
power spectrum of accelerated particles in nonrelativistic
shocks [6,17], F ∝ p−s, s ¼ 3Vu=ðVu − VdÞ, where Vu
and Vd are, respectively, the upstream and downstream
fluid speeds in the shock frame, and p is the ion

momentum, p=m ≫ Vu, where m is the ion mass. Here,
FðpÞ ¼ R

fðp; μÞdμ is the omnidirectional phase space
density, that is, pitch-angle cosine-integrated distribution
function. More than 80% of the observed shocks are
oblique, with the angle between the shock normal and
upstream magnetic field θ > 30° [18]. In oblique shocks,
the magnetic jump has to be taken into account. The
magnetic compression has been shown to significantly
affect the ion motion even at θ ¼ 10° [19]. As a result, a
part of the ions are reflected and the continuity require-
ments have to be replaced with the equality of the fluxes
across the shock [12,17]. The widely accepted approxima-
tion of the magnetic moment conservation during the
ion motion in the shock front reduces to the previously
applied continuity requirement for the transmitted particles
[6,12,17]. Magnetic moment conservation places a hard
threshold on the pitch angle of the incident ions: all ions
with larger pitch angles are reflected, while all ions with
smaller pitch angles are transmitted. Yet, the ion dynamics
in the shock front are gyrophase dependent and the eventual
fate of an ion; that is, whether it is reflected or transmitted
depends not only on the pitch angle, but also on the
gyrophase of the ion at the entry to the shock [20,21]. For
gyrophase-averaged distributions, these dynamics can be
described in terms of the probabilities of being reflected
or transmitted [19,21]. These probabilities are not sensitive
to the details of the shock structure, but depend on the
magnetic compression and the angle between the shock
normal and the upstreammagnetic field [19]. In general, the
flux continuity is not equivalent to the distribution function
continuity. Since the spectral index s is obtained from the
matching conditions, it may depend on the probabilities of
the reflection and transmission. In this Letter, we provide
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the matching conditions at the shock front without invoking
the approximation of the magnetic moment conservation.
We derive the spectral index of the accelerated ions in terms
of the reflectivity.
Basic equations.—In what follows, subscripts u and d

refer to the upstream and downstream regions, respectively.
Primed variables are in the fluid frame and nonprimed are
in the de Hoffman–Teller (HT) frame. There is no uniform
electric field in the HT frame, so that in the scatter-free
region, the particle energy is conserved. In the diffusive
region, the energy change is due to scattering, which is
elastic in the fluid frame. The HT velocity relative to the
plasma frame, V ¼ ~V= cos θ, is along the magnetic field
both upstream and downstream. Here, ~V is the fluid
velocity along the shock normal. Since the tangential
component of the HT velocity is constant throughout the
shock, one has Vusinθu¼Vdsinθd and ~Vu tanθu¼ ~Vd tanθd.
The relations between momentum and energy in the fluid
and HT frames, respectively, are

p0μ0 ¼ Γðpμ −mVγÞ; γ ¼ ð1þ p2=m2c2Þ1=2 ð1Þ

γ0 ¼ Γðγ − Vpμ=mc2Þ; Γ ¼ ð1 − V2=c2Þ−1=2 ð2Þ

Here, μ ¼ cosðcpBÞ is the particle pitch-angle cosine. For
V ≪ v, Γ ¼ 1, by Taylor expanding (2) up to the first order
in V=v, one has p0 ¼ p −mVμγ. We assume that upstream
and downstream distributions fðp0; μ0Þ obey the diffusive
acceleration equation (see, e.g., Ref. [17])

Γ cos θðp0μ0=γ0 þ VÞ ∂f∂x ¼ ∂
∂μ0 Dðp0; μ0Þ ∂

∂μ0 f: ð3Þ

The equations are written in mixed variables, where x is in
the HT frame, while p0 and μ0 are in the fluid frame.
Matching conditions.—Let us define the probabilities

tðμ; μ1Þ, rðμ; μ2Þ, and lðμ1; μ2Þ as follows: a) tðμ; μ1Þ
(transmission) is the probability of an incident ion,
with a pitch-angle cosine μ > 0 to be transmitted (appear
downstream) with a pitch-angle cosine μ1 > 0, b) rðμ; μ2Þ
(reflection) is the probability of an incident ion, with the
initial μ > 0 to be reflected (appear upstream) with μ2 < 0,
and c) lðμ1; μ2Þ (leakage) is the probability of a downstream
ion, with the initial μ1 < 0 to be transmitted (appear
upstream) with μ2 < 0. It has been shown that for
v ≫ Vu, these probabilities do not depend on the particle
momentum [19]. The probabilities are normalized as
follows:

R
0
−1 rðμ; μ2Þdμ2 ¼ χðμÞ, R

0
−1 lðμ1; μ2Þdμ2 ¼ 1,R

1
0 tðμ; μ1Þdμ1 ¼ τðμÞ ¼ 1 − χðμÞ, where the reflectivity
χðμÞ is the fraction of the initial flux of the upstream
incident ions with a pitch-angle cosine μ, which are
reflected. When crossing from upstream to downstream,
ion reflection occurs because of the increase of the angle
between the shock normal and the magnetic field, which

enhances the gyration of an ion at the expense of the motion
along the magnetic field, thus allowing some ions to return
to the shock front. When crossing from downstream to
upstream, the angle between the shock normal and the
magnetic field decreases, and gyration is not sufficient for
an ion to return to the shock front. Thus, all downstream
ions moving toward the shock cross it without being
reflected, as was shown analytically in the approximation
of the magnetic moment conservation [5] and also by
numerically tracing ions without this approximation [22].
The matching conditions at the shock front require equality
of the fluxes [5,12,15,17]. The upstream and downstream
energies are, in general, slightly different because of the
cross-shock potential: γd ¼ γu − eϕ=mc2. In the HT frame,
the cross-shock potential is typically, by about an order
of magnitude, smaller than the energy of the ion moving
with the speed Vu cos θu [23], eϕ ∼ 0.1mV2

ucos2θu=2. For
the high-energy ions considered here, the relative effect of
the cross-shock potential is of second order in Vu=v and
will be neglected. Thus, in what follows, pu ¼ pd ¼ p,
dpd ¼ dpu, and γu ¼ γd ¼ γ. Consider now the particles
with the momenta in the interval p, pþ dp and down-
stream pitch-angle cosine in the interval μ1, μ1 þ dμ1. The
flux of these particles in the downstream region is

dNd ¼ vμ1 cos θdfdðp; μ1ÞdVpdμ1; ð4Þ

where v ¼ p=mγ and dVp ¼ 2πp2dp. Here, vμ1 cos θd is
the x component of the velocity of the guiding center in the
downstream region. This flux should be equal to the flux of
the particles transmitted from upstream

dNu ¼
�Z

1

0

vμ cos θufuðp; μÞtðμ; μ1Þdμ
�
dVpdμ1: ð5Þ

Thus, for the forward moving ions, μ1, μ > 0, one getsZ
1

0

μ cos θufuðp; μÞtðμ; μ1Þdμ ¼ μ1 cos θdfdðp; μ1Þ: ð6Þ

All downstream ions leaving the shock are transmitted from
the upstream region. Integration over μ1 givesZ

1

0

μcosθuτðμÞfuðp;μÞdμ¼
Z

1

0

μcosθdfdðp;μÞdμ: ð7Þ

For the backward moving ions, μ1, μ2 < 0, one gets

μ2 cos θufuðp; μ2Þ ¼ −
Z

1

0

μ cos θufuðp; μÞrðμ; μ2Þdμ

þ
Z

0

−1
μ1 cos θdfdðp; μ1Þlðμ1; μ2Þdμ1:

ð8Þ
The upstream ions leaving the shock are produced by
reflection or leakage or both. Integration over μ2 gives
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−
Z

1

0

μ cos θufuðp; μÞχðμÞdμþ
Z

0

−1
μ cos θdfdðp; μÞdμ

¼
Z

0

−1
μ cos θufuðp; μÞdμ: ð9Þ

We note that the probabilities are defined in HT frame.
Hard threshold.—Let there be χðμÞ ¼ 1 for 0 < μ < μc,

and χðμÞ ¼ 0 for μ > μc. Let there also be a one-to-one
correspondence between the pitch-angle cosines: a) μ1 ¼
μ1ðμÞ for any μ > μc (transmission), b) μ2 ¼ μ2ðμÞ for any
0 < μ < μc (reflection), and c) μ2 ¼ μ2ðμ1Þ for any μ1 < 0
(leakage). In this case, an upstream backstreaming ion
with certain momentum and pitch angle is either reflected
or leaked from downstream. Reflection and leakage are
now mutually exclusive, and there is no mixing of the
reflected and leaked populations. Then, one can write
tðμ;μ1Þ¼ δ(μ1−μ1ðμÞ), μ> μc, rðμ; μ2Þ ¼ δ(μ2 − μ2ðμÞ),
0 < μ < μc, lðμ1; μ2Þ ¼ δ(μ2 − μ2ðμ1Þ), μ1, μ2 < 0.
Respectively, the matching conditions will take the form

μcosθufuðp;μÞjdμ1=dμj−1¼ μ1 cosθdfdðp;μ1Þ ð10Þ

for transmission, μ > μc,

−μ cos θufuðp; μÞjdμ2=dμj−1 ¼ μ2 cos θufuðp; μ2Þ ð11Þ

for reflection, 0 ≤ μ ≤ μc, and

μ1 cosθdfdðp;μ1Þjdμ2=dμ1j−1 ¼ μ2 cosθufuðp;μ2Þ ð12Þ

for leakage, μ1 < 0. The continuity of the distribution
functions for transmitted and leaked ions across the shock,
fuðp;μuÞ¼ fdðp;μdÞ, requires cosθuμudμu ¼ cosθdμddμd.
Since the function μdðμuÞ and the inverse function are
single-valued functions, and dμd=dμu > 0, one has to
require μu ¼ 1 ↔ μd ¼ 1, otherwise either upstream or
downstream distribution would have a gap in the vicinity of
μ ¼ 1. Integrating the last equation with this requirement,
one has gu≡ ð1−μ2uÞcosθu¼ð1−μ2dÞcosθd≡gd, which is
nothing but the magnetic moment conservation (cf., e.g.,
Refs. [12,17]). Indeed, G¼v2⊥=jBj¼v2ð1−μ2Þcosθ=Bx¼
ðv2=BxÞg. If the magnetic moment is conserved for
reflection also, then fuðp;−μÞ ¼ fuðp; μÞ for reflected
ions. Thus, the upstream ion population is an even function
of μ in the shock frame but not in the fluid frame. Pitch-
angle scattering occurs far from the shock front. Unless the
diffusive mechanism is so peculiar that the distribution is
even for jμj < μc, but it is not even for jμj > μc, the whole
upstream distribution would be an even function of μ.
Accordingly, the downstream distribution should be also
an even function of μ in the shock frame, but not in the
fluid frame. Thus, in this case, the distributions cannot be
isotropic in the fluid frame.
Weakly ansiotropic distributions.—The derived

Eqs. (6)–(9) are related to the changes in the pitch-angle

cosine at the shock crossing, different from the usually
assumed one due to the magnetic moment conservation.
Therefore, it is natural to expect that anisotropic distribu-
tions will be affected by this modification. However, the
first and the most important test of the significance of
the new physics would be application to the isotropic part
of the distribution function in the classical case of weakly
isotropic distributions achieved by diffusive processes
[4,6,12]. Let the scattering be isotropic and separable:
Dðp0; μ0Þ ¼ Dðp0Þð1 − μ02Þ. Here, p0 and μ0 are the
momentum and pitch-angle cosine, respectively, in the fluid
frame. Following, e.g., Ref. [6], we consider the down-
stream distribution, which is isotropic in the fluid frame:
fdðp0; μ0Þ ¼ 1

2
Fdðp0Þ, Fdðp0Þ ¼ R

1
−1 dμ

0fdðp0; μ0Þ. Taylor
expanding p0 ¼ p −mVμγ, one has in HT frame

fdðp; μÞ ≈
FdðpÞ
2

−
mVdμγ

2

�
dFd

dp

�
: ð13Þ

For the upstream distribution, we restrict ourselves to the
first two terms in the fluid frame [6,17], corresponding
the dipole correction to the isotropic distribution in the
order Vu=v≪ 1: fuðp0;μ0Þ¼ð1–3Vuμ

0=v0ÞFuðp0Þ=2, which
gives in the HT frame

fuðp; μÞ ≈
�
1 −

3Vuμ

v

�
FuðpÞ
2

−
mVuμγ

2

�
dFu

dp

�
: ð14Þ

Substituting into the matching conditions for the forward
moving ions (7), one has in the lowest order

αFu cos θu ¼ Fd cos θd=2; α ¼
Z

1

0

μð1 − χÞdμ: ð15Þ

In the first order, one gets

3ζðVu=vÞcosθuFuþζmVu cosθuγ

�
dFu

dp

�

¼ 1

3
mVd cosθdγ

�
dFd

dp

�
; ζ¼

Z
1

0

μ2ð1−χÞdμ: ð16Þ

Together, these relations give�
2αVd

3
− ζVu

��
dFu

dp

�
¼

�
3ζVu

p

�
Fu; ð17Þ

which has the solution Fu ∝ p−s, with

s ¼ 3½1 − ð2α=3ζÞðVd=VuÞ�−1: ð18Þ

For χ ¼ Hðμc − μÞ, where HðxÞ is the Heaviside step
function, and μc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos θd= cos θd

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Bu=Bd

p
,

one has α ¼ 1
2
ð1 − μ2cÞ, ζ ¼ 1

3
ð1 − μ3cÞ, and ð2α=3ζÞ ¼

ð1þ μcÞ=ð1þ μc þ μ2cÞ < 1. In the parallel case, θu ¼
θd ¼ 0 and μc ¼ 0, so that one returns to the classical
scl ¼ 3r=ðr − 1Þ, r ¼ Vu=Vd. In general, if dχ=dμ ≤ 0 for
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0 < μ < 1, one has 2α < 3ζ. Indeed, let us approximate
the reflectivity with a stepwise function of μ: 1 − χ ¼P

iσiHðμ − μiÞ, where all σi > 0 and
P

iσi ≤ 1.
Substituting into (15) and (17), one has 2α − 3ζ ¼P

iσiμ
2
i ðμi − 1Þ < 0. Since any monotonic function can

be represented as a limit of a stepwise function with the
number of steps going to infinity, one concludes that for the
reflectivity, monotonically decreasing with the pitch-angle
cosine, the spectrum should be less steep than the classical
one, s < scl. A rough approximation χðμÞ ¼ 1 − μ was
numerically obtained by Gedalin et al. [19] for a quasipar-
allel shock with the Mach number M ¼ 3, the magnetic
compression Bd=Bu ¼ 1.5, and the shock angle θ ¼ 10°.
These parameters are close to those of a low-Mach number
low-β interplanetary shock, observed by Wind on Dec 16,
2006 [24]. Here, β is the ratio of the upstream kinetic
pressure to the upstream magnetic pressure. In this case,
α¼ 1=3, ζ ¼ 1=4, and s¼ 3r=ðr−8=9Þ. Figure 1 compares
the dependence of the spectral index s on the compression
ratio r ¼ Vu=Vd in this case, with the predictions of the
classical DSA. In the extreme case of a strong shock, r ¼ 4,
one has s ¼ 3.86, instead of the classical s ¼ 4. For lower
compression ratios r, the difference is larger. For r ¼ 2,
which is more typical for interplanetary shocks, one has
s ¼ 6 for the classical spectrum and s ¼ 5.4 for the
modified one.
Conclusions.—The collision-free dynamics of high-

energy ions at the oblique shock front is gyrophase
dependent. In general, the magnetic moment of the ions
is not conserved upon crossing the shock transition.
Accordingly, the chances of being reflected depend not
only on the initial pitch-angle cosine, but also on the initial
gyrophase of the ion. Within the gyrophase-averaged
description of the distribution functions for accelerated
ions, this means that the reflection and transition should
be treated using the corresponding probabilities as

functions of the pitch-angle cosine. The probabilities
depend parametrically on the magnetic compression and
the angle between the shock normal and the upstream
magnetic field, but do not depend on the particle momen-
tum [19]. In the steady state, where there is no gradual
pileup of ions at the shock itself, the fluxes of the ions
entering and leaving the shock should be equal.
Respectively, the matching conditions at the shock are
expressed in an integral form in terms of the reflection and
transition probabilities. The effect of the probabilistic
shock crossing on the power spectrum on the isotropic
part of the distribution is found in the classical theoretical
case of the weak anisotropy. In a wide range of the particle
momenta, the distributions should be self similar, with a
power spectrum f ∝ p−s. The spectral index s is expressed
in terms of the reflectivity, that is, the functional depend-
ence on the pitch-angle cosine of the fraction of reflected
ions. The probabilistic nature of the ion reflection at the
oblique shock front results in a significant modification
of the spectral index, which is no longer universal and
depends on three parameters instead of one: a) the ratio of
the fluid velocities Vu=Vd, b) the ratio of the magnetic
fields Bd=Bu, and c) the angle θ between the shock normal
and the upstream magnetic field. Our derivation provides
the asymptotic spectral index for shock-accelerated par-
ticles at high energies; the spectrum at lower energies is
not addressed. The spectral index is derived in the HT
frame. In order to have it in any other reference frame, the
corresponding Lorentz transformation should be applied.
The spectral index depends both on the scattering in the
diffusive region and on the scatter-free shock transition.
This double dependence is clearly seen in Eq. (18),
obtained in the strong upstream and downstream scatter-
ing regime, when deviations from isotropy are weak. In
this expression, the dependence on Vu=Vd is due to the
diffusive shaping of the distributions, and the dependence
on α=ζ is due to the scatter-free dynamics in the shock
front.
While DSA is probably a good approximation within

the uncertainty of presently available measurements, this
should not prevent theoretical developments, which study
the physics of the acceleration in more depth than it is done
within DSA. Although the difference between 4 and 3.86
may seem minor, the significance of the result is that even
in this lowest order approximation of near isotropy, there is
a modification of the classical spectrum. That is, the
proposed approach does not show up only in the high-
order corrections, which are not known to affect the
spectrum for sure. Effects of the proposed modification
of the shock acceleration theory on substantially aniso-
tropic distributions requires a deeper analysis and is beyond
the scope of this Letter.
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FIG. 1. Dependence of the spectral index s on the fluid speed
ratio Vu=Vd for the classical DSA, 2α=3ζ ¼ 1 (dashed line) and
for the case 2α=3ζ ¼ 8=9 (solid line).
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