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We analyze the quantum quench dynamics in the formation of a phase-biased superconducting
nanojunction. We find that in the absence of an external relaxation mechanism and for very general
conditions the system gets trapped in a metastable state, corresponding to a nonequilibrium population of
the Andreev bound states. The use of the time-dependent full counting statistics analysis allows us to
extract information on the asymptotic population of even and odd many-body states, demonstrating that a
universal behavior, dependent only on the Andreev state energy, is reached in the quantum point contact
limit. These results shed light on recent experimental observations on quasiparticle trapping in super-
conducting atomic contacts.
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Superconducting nanodevices are of central interest as
building blocks of future quantum information processors.
While traditionally based on Josephson junction architec-
tures [1], superconducting quantum dots and quantum point
contacts are now being explored for quantum information
applications like the generation of electron entanglement
through Cooper pair splitting [2,3] and the so-called
Andreev qubits [4]. Similar hybrid systems can host
Majorana-like excitations whose search and potential
applications are generating huge research activity in the
condensed matter community [5]. Within this context,
studies of the transient response of superconducting nano-
devices are of basic as well as practical interest [6]. This is
connected with the unexplained evidence of residual non-
equilibrium quasiparticles which undermines the quantum
coherence in these devices [7]. In the case of super-
conducting atomic contacts (SACs), this phenomenon
manifests in the presence of long-lived trapped quasipar-
ticle states within their Andreev bound states (ABSs) [8,9].
In the present work, we address these questions by

analyzing the quench dynamics in the formation of a
phase-biased superconducting single-channel contact. We
consider the situation schematically depicted in Fig. 1,
where a central electronic level is abruptly coupled to two
superconducting leads [Fig. 1(a)]. Our main question con-
cerns the properties of the state which is generated at
intermediate times (i.e., τin ≫ t ≫ ℏ=Δ, where τin is a
characteristic inelastic relaxation time and Δ is the super-
conducting gap). We find that for generic values of the
parameters the system gets trapped into a metastable state,
reflecting a nonequilibrium population of the ABSs and
exhibiting a smaller or even opposite supercurrent to the one
expected for thermal equilibrium. While for weak coupling
to the leads Γ < Δ this state depends strongly on the initial
conditions, at large Γ it reaches a “universal” behavior

dependent only on the Andreev level position within the gap
but still deviating from the equilibrium population.
Furthermore, we study the transient process in terms
of charge transfer probabilities derived from the time-
dependent full counting statistics (FCS) analysis. This
allows us to determine the separate populations of even
and odd parity states, informationwhich is inaccessible from
any mean field study of single-particle properties. We find
that the odd parity states, corresponding to the trapping of a
quasiparticle within the ABSs, get a significant population
∼0.2–0.5 for a broad range of parameters, in agreement with
the experimental observations for SACs [4,8].
Model and formalism.—Our model nanojunction is

composed of three regions: a central spin-degenerate
electron level (which can be initially empty or occupied)
and twoBCS superconducting leads. These are connected at
t ¼ 0 by a tunnel Hamiltonian HTðtÞ, creating excited
quasiparticles which undergo multiple tunneling events
between the electrodes. In particular, successive Andreev

FIG. 1. Schematic representation of the nanojunction formation
process considered in this work. In case (a) the tunneling
amplitudes between the central region and the leads are suddenly
connected at t ¼ 0, while in case (b) the tunnel amplitudes are
constant but there is a bias voltage switch off at t ¼ 0. The
nanojunction is formed on a superconducting loop threaded by a
magnetic field which allows us to fix the phase difference ϕ.
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reflections are needed to develop the ABSs within the gap
at energies �ϵA and to establish a nondissipative
(Josephson) current through the device. The system
Hamiltonian H ¼ Hleads þH0 þHT can be written in
terms of Nambu spinors Ψ̂†

j ¼ ðc†j↑; cj↓Þ, where j ¼ kν; 0
denotes the ν ¼ L, R lead and the central level, respec-
tively. We have H0 ¼ Ψ̂†

0ĥ0Ψ̂0, Hleads ¼
P

kνΨ̂
†
kνĥkνΨ̂kν,

and HT ¼ P
k;ν(Ψ̂

†
kνV̂νðtÞΨ̂0 þ H:c:), where ĥ0 ¼ ϵ0σz

and ĥkν ¼ ϵkνσz þ Δνσx (σz and σx denote here Pauli
matrices in Nambu space). For describing an abrupt
switch on into a phase-biased situation, we use V̂νðtÞ ¼
θðtÞV0

νσzeiσzϕν , where ϕL − ϕR ¼ ϕ determines the phase
difference between the leads and θðtÞ is the Heaviside
function. While this initialization can be considered some-
what artificial, it generates the same dynamics as a large
applied bias voltage which is suddenly switched off at t ¼ 0
[see Fig. 1(b) and Supplemental Material [10]]. For
simplicity, we consider a constant normal density of states
ρL;R in the leadswith a finite bandwidthW taken as the larger
energy scale in the model, and we define the stationary
tunneling rates as Γν ¼ πðV0

νÞ2ρν, and Γ ¼ ΓL þ ΓR. The
central level initial charge will be denoted by nσð0Þ, where
σ ≡ ↑;↓. Hereafter, we assume ℏ ¼ e ¼ 1.
The transport properties of the system are fully charac-

terized by the generating function (GF) defined on the
Keldysh contour as [13]

Zðχ; tÞ ¼
�

TK exp
�

−i
Z

C
dt0HT;χðt0Þ

��

0

; ð1Þ

where χ ≡ χνðtÞ are counting fields entering as phase
factors modulating the hopping terms in HT and having
opposite values �χν on the two branches of the Keldysh
contour. The average in Eq. (1) is taken over the decoupled
system. The GF gives access to the charge transfer
cumulants, i.e., CnðtÞ ¼ ðiÞn∂nS=∂χn⌋0, where S ¼
lnZðχ; tÞ. For definiteness, we will hereafter assume χL ¼
χ and χR ¼ 0, thus focusing on charge transfer through the
left interface. The corresponding current cumulants are
given by InðtÞ ¼ ∂Cn=∂t. One can also decompose the GF
as Zðχ; tÞ ¼ P

PnðtÞeiχn, where PnðtÞ can be associated
with the probability of transferring n charges in the
measuring time t. In the BCS superconducting case, the
charge in the leads is not well defined, and PnðtÞ can
eventually take negative values [14–16]. The PnðtÞ are
therefore referred to as quasiprobabilities.
It can be shown that Zðχ; tÞ can be computed as a

Fredholm determinant on the Keldysh contour [17–19]. A
straightforward extension of this formalism to the super-
conducting case leads to

Zðχ; tÞ ¼ det ½Gðχ ¼ 0ÞGðχÞ−1�; ð2Þ
whereG ¼ −ihTKΨ0ðtÞΨ†

0ðt0Þi is the Green function of the
dot coupled to the leads defined in Keldysh-Nambu space.

For a generic situation, we evaluate Eq. (2) numerically
following the approach described in Supplemental Material
[10]. Analytical results allow us to further clarify our
findings in certain limits as described below.
Current, charge, and spectral density evolution.—We

first analyze the transient regime for these basic quantities.
Results for the current evolution are shown in the upper
panel in Fig. 2 for different values of the tunneling rates,
phase difference ϕ=π ¼ 0.64, and for an initial condition
(n↑ð0Þ; n↓ð0Þ) ¼ ð0; 1Þ. We concentrate here in the highly
transmitted, electron-hole symmetric case (i.e., ϵ0 ¼ 0,
ΓL ≃ ΓR) where the nonequilibrium effects that we discuss
in this work are more pronounced. Moreover, when Γ ≫ Δ,
this case corresponds to a highly transmitted single-channel
SAC. In the electron-hole symmetric case, the stationary
ABSs are roughly located at ϵA ≃ ~Δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − τsin2ðϕ=2Þ

p
,

where τ ¼ 4ΓLΓR=Γ2 is the normal transmission and ~Δ <
Δ varies from ~Δ ∼ Γ for Γ ≪ Δ to ~Δ → Δ for Γ ≫ Δ [21].
As can be observed, the current reaches an asymptotic
value smaller than the thermal equilibrium stationary one
(indicated by the arrows in Fig. 2), becoming even of
opposite sign in the case of Γ≲ Δ.
Further insight on this behavior can be obtained by

analyzing the evolution of the central region occupied
spectral density (the method used to extract this quantity is
described in Supplemental Material [10]). The lower panels
in Fig. 2 clearly illustrate the process of formation of the

FIG. 2. The upper panel shows the transient current for different
Γ=Δ values (from top to bottom: 10, 5, and 1) and a fixed phase
difference ϕ=π ¼ 0.64 for the perfect transmission case. The
solid lines correspond to the case of no external relaxation
mechanism, and the dashed ones correspond to adding a
phenomenological broadening in the spectral densities of size
1=τin ¼ 0.02Δ [20]. The arrows indicate the stationary values for
thermal equilibrium. The lower panels show the corresponding
time-dependent occupied spectral densities for Γ=Δ ¼ 10 (left)
and Γ=Δ ¼ 1 (right).
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subgap states, whose spectral weight mainly originates
from the lower continuous spectrum at ω < −Δ. In
addition, the continuous spectrum exhibits oscillations
which are gradually damped. As can be observed, it
requires a characteristic time ∼2=jϵAj for the ABSs to
become well defined [22]. The plots also show that while
for Γ ≫ Δ the lower ABS becomes more populated, there
is an inversion in their population for Γ≲ Δ.
Low tunneling rate regime.—In this regime, the con-

tribution from the continuum states to the level charge
becomes negligible. As described in Supplemental Material
[10], this allows us to obtain an analytical expression for the
population of the ABSs in this limit. Assuming the initial
condition ðn↑; n↓Þ ¼ ð0; 1Þ, these are given by

n�ðtÞ ¼
Γ
π

Z
−Δ

−W

ðω ∓ Δ · ϵA=ΓÞ½cos ðω�tÞ − 1�
ω2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − Δ2

p dω; ð3Þ

where þ (−) corresponds to the upper (lower) ABS and
ω� ¼ ω ∓ ϵA. As shown in the upper panel in Fig. 3, the
comparison of nþ þ n− with the total spin-up charge
obtained numerically for Γ ¼ 0.05Δ yields very good

agreement. Both nþ and n− exhibit an initial linear increase
[23], with a slope set by Γ, followed by an oscillatory
behavior with a characteristic period set by ∼2π=ðΔ� ϵAÞ.
For Γ ≪ Δ and t > 1=Δ, n�ðtÞ is well described by the
expression

n�ðtÞ ¼ n�ð∞Þ þ Γ
Δ

�

1� ϵA
Γ

�
sin½ðΔ� ϵAÞt − π

4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΔ · t

p ; ð4Þ

where n�ð∞Þ ¼ ðΓ=2� ϵA=πÞ=Δ. This expression indi-
cates that the oscillatory behavior dies out with a weak
power law (i.e., as t−1=2). While in this limit the upper level
is more populated than the lower one, Eq. (3) would predict
an inversion of the relative populations for Γ=Δ ∼ 1.
Although for Γ≳ Δ the contribution from the continuum
to the system dynamics can no longer be neglected, the
prediction of the population inversion is consistent with the
numerical results for the current shown in the upper panel
in Fig. 2.
It is important to notice that when electron-hole symmetry

is broken (ϵ0 ≠ 0) the switch-on process couples the two
ABSs, thus generating an additional contribution to the level
chargewhich oscillates with a frequency 2ϵA (see the inset in
the upper panel in Fig. 3). A more detailed analysis of this
case is provided in Supplemental Material [10].
Dependence on initial conditions.—The fact that the

system reaches a metastable state suggests that this can be
extremely sensitive to the initial conditions. This is true for
the low Γ regime, but this sensitivity gradually disappears
for increasing Γ. This is illustrated in the lower panel in
Fig. 3, where the current in the perfect transmission case for
Γ ¼ 0.05Δ and Γ ¼ 10Δ is shown for three different initial
conditions ðn↑; n↓Þ ¼ ð0; 0Þ, (0,1), (1,1). It is observed that
a positive or negative peak in I of size ∼ΓL appears at short
times when the initial charge deviates from the expected
stationary value. This peak, however, relaxes in a time scale
set by 1=Γ, as illustrated in the inset in the lower panel
in Fig. 3.
FCS analysis.—New light on the system dynamics can

be shed by analyzing the quasiprobabilities PnðtÞ. We first
focus in the large Γ=Δ limit where, as commented before,
the influence of the initial conditions is less pronounced. A
clear picture emerges when PnðtÞ is analyzed as a function
of n as in Fig. 4, where a density plot of PnðtÞ on the ðt; nÞ
plane is shown. One can clearly identify here three main
lines with slopes I−, Iodd, and Iþ, which can be associated
with three different coexisting many-body states. The
character of these states can be inferred from the slope
values. Thus, I− ∼ 2∂ϵA=∂ϕ corresponds to the system
ground state, Iþ ∼ −I− can be associated with the even
excited state, and Iodd ∼ 0 would correspond to an odd state
with a trapped quasiparticle within the ABSs (this last state
is spin degenerate) [8]. A slight deviation of the slopes from
these values arises from the contribution of the continuum
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FIG. 3. The upper panel shows the ABS populations nþ (blue
line) and n− (red line) for the case of the initial condition
ðn↑; n↓Þ ¼ ð0; 1Þ with Γ ¼ 0.05Δ and ϕ=π ¼ 0.64 as determined
from Eq. (3). The dashed line corresponds to the total spin-up
charge obtained numerically, and the green line corresponds to
nþ þ n−. The inset in the upper panel illustrates the evolution of
the level charge on a larger time scale in an electron-hole
symmetric (ϵ0 ¼ 0, green curve) and nonsymmetric situation
(ϵ0 ¼ 0.025Γ, black curve). The black curve has been shifted
down for clarity. The lower panel illustrates the dependence of the
transient current on the initial condition for the perfect trans-
mission case with Γ=Δ ¼ 10 (solid lines) and Γ=Δ ¼ 0.05
(dashed lines). The three initial conditions considered were
ðn↑; n↓Þ ¼ ð0; 0Þ (red lines), (0,1) (green lines), and (1,1) (blue
lines). The inset corresponds to an enlargement at very short
times for the large Γ case.
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to the supercurrent which becomes negligible in the
Γ=Δ → ∞ limit.
We can further characterize the metastable state by the

weights P−, Pþ, and Podd of these three many-body states.
An interesting feature of the system evolution is that once
the ABSs become well defined (at times of the order of
2=jϵAj) these weights remain nearly constant as far as no
external relaxation mechanism is operative on this time
scale. In order to extract these weights, two procedures can
be used: (i) directly from the PnðtÞ at sufficiently large
times, integrating the Pn around the three peaks (see the
right inset in Fig. 4) and (ii) using the mean current, the
mean noise, and the normalization condition to set a system
of three equations with three unknowns from which Pþ,
P−, and Podd can be extracted (see Supplemental Material
[10]). Both procedures yield results which are in good
agreement. Figure 5 shows the resulting asymptotic
weights as a function of ϵA for two different values of
Γ=Δ. In the case Γ=Δ ¼ 10 (left panel), the odd state
exhibits an increasing population with decreasing ϵA reach-
ing a value of the order of 0.5 when ϵA → 0. At the same
time, P� tend to converge to the value 0.25 in this limit. As
in the case of the current, the results for this large Γ case are
rather insensitive to the particular choice of the initial
conditions. Moreover, the results in this limit are universal
depending only on ϵA irrespective of the junction trans-
mission, as shown by squares (τ ¼ 0.95) and circles
(τ ¼ 0.9) in the left panel in Fig. 5. These results are in
remarkable agreement with those of Ref. [4], which were
obtained for a SAC with τ ∼ 0.99 and could be qualitatively
understood in terms of a simple rate equation picture where
the even ground state, the two odd states, and the excited
even state are connected by some effective rates, as
depicted in the inset in Fig. 5. Within this simplified
picture and taking Γodd ∼ 1=Δ and Γ� ∼ 1=ðΔ� ϵAÞ, i.e.,
inversely proportional to the energy distance between the

states and the continuum, one obtains the results indicated
by the dashed lines in the left panel in Fig. 5, which are in
good agreement with the numerical ones (see [10] for more
details). In contrast, the results become increasingly sensi-
tive to the initial conditions for decreasing Γ=Δ. As shown
in the right panel in Fig. 5, for Γ=Δ ¼ 1 the asymptotic
populations for different initial conditions strongly deviate
from each other.
One should finally comment on the effect of additional

relaxation mechanisms. In Ref. [9], the relaxation through
photon and phonon emission was analyzed using a rate
equation approach, obtaining a semiquantitative agreement
with the experimental results of Ref. [8] in the stationary
regime. This approach, however, is not able to describe the
initial stages of the ABS formation which can be addressed
by the present microscopic theory. In fact, one can identify
Podd with the “initial poisoning” probability defined in
Ref. [8]. A direct experimental test of the universal
behavior predicted for this quantity would require analyz-
ing the response to large voltage pulses.
Conclusions.—We have shown that the transient dynam-

ics in the formation of a phase-biased superconducting
nanojunction leads to a metastable state characterized by a
nonequilibrium population of the system ABSs. Although
in the quantum dot regime this state is strongly sensitive to
the initial conditions, in the quantum point contact limit this
sensitivity disappears and a universal asymptotic popula-
tion is reached, dependent only on the ABS energy levels.
These findings shed light on the available experimental
results like those of Refs. [4,8] and could be tested more
thoroughly in future experiments.

FIG. 4. Density plot of PnðtÞ in the ðt; nÞ plane for the perfect
transmission case with Γ=Δ ¼ 10 and ϕ=π ¼ 0.64. The dashed
lines are slopes corresponding to the current in the different
coexisting many-body states (see the text). The right inset shows
a cut of PnðtÞ at t ¼ 50Δ−1, demonstrating that three asymptotic
populations can be clearly identified.

FIG. 5. The left panel shows the asymptotic probabilities P�
and Podd for Γ=Δ ¼ 10 as a function of the ABS energy ϵA. Solid
lines correspond to perfect transmission, squares to τ ¼ 0.95, and
dots to τ ¼ 0.9. The dashed lines are results obtained with the
simple rate equation model schematically depicted in the inset
and assuming Γodd ∼ 1=Δ and Γ� ∼ 1=ðΔ� ϵAÞ. The right panel
corresponds to Γ=Δ ¼ 1, perfect transmission, and two different
initial conditions ðn↑; n↓Þ ¼ ð0; 1Þ (solid lines) and (0,0)
(dashed lines).
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