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A fundamental open issue in physics is whether and how the fermion sign problem in quantum
Monte Carlo (QMC) simulations can be solved generically. Here, we show that Majorana-time-reversal
(MTR) symmetries can provide a unifying principle to solve the fermion sign problem in interacting
fermionic models. By systematically classifying Majorana-bilinear operators according to the anticom-
muting MTR symmetries they respect, we rigorously prove that there are two and only two fundamental
symmetry classes which are sign-problem-free and which we call the “Majorana class” and “Kramers
class,” respectively. Novel sign-problem-free models in the Majorana class include interacting topological
superconductors and interacting models of charge-4e superconductors. We believe that our MTR unifying
principle could shed new light on sign-problem-free QMC simulation on strongly correlated systems and
interacting topological matters.
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Interactions between particles are ubiquitous, and study-
ing interacting models of many-body systems is of central
importance in modern condensed matter physics [1–3],
quantum chromodynamics, and other fields. However,
almost all interacting models in two and three dimensions,
especially those with strong correlations, are beyond
the solvability of any known analytical methods.
Consequently, developing efficient and unbiased numerical
methods plays a key role in understanding many-body
physics in solid state materials like high-temperature
superconductors [4,5] and other systems such as quark
matter. Quantum Monte Carlo (QMC) simulation is among
the most important approaches to study interacting many-
body systems [6–21], as it is numerically exact and
intrinsically unbiased. Nonetheless, QMC simulation often
encounters the notorious fermion sign problem, making it
practically infeasible to study those models with large sizes
and at a low temperature [22]. It has been highly desired to
find solutions to the fermion sign problem in interesting
models that are relevant to intriguing systems such as high-
temperature superconductors [23].
Even though a general solution of the fermion sign

problem is nondeterministic polynomial hard [24], many
specific interacting models have been successfully identi-
fied to be sign-problem-free. One prototype sign-problem-
free example is the repulsive Hubbard model at half filling
[8]. In the language of auxiliary-field QMC simulation
[6–8], the partition function Z ¼ P

ρ, where the
Boltzmann weight ρ ¼ Tr

QNτ
i¼1 exp½ĥi� with ĥi being

fermion-bilinear operators depending on auxiliary fields
at imaginary time τi. If all Boltzmann weight ρ > 0, the
simulation is free from the fermion sign problem, and
the needed computation time grows only polynomially with
the system size. Tremendous effort has been devoted to

construct a fundamental principle for solving the fermion
sign problem.
One successful strategy of solving the sign problem is to

employ the Kramers symmetry of fermion-bilinear oper-
ators ĥi, which is defined as having both time-reversal
symmetry Θ̂ with Θ̂2 ¼ −1 and charge conservation Q̂.
With the Kramers symmetry, eigenvalues always appear in
Kramers pairs such that the Boltzmann weight can be
shown to be positive definite [25]. Sign-problem-free
models with Kramers symmetry have been studied

TABLE I. The “periodic table” of sign-problem-free symmetry
classes defined by the set of anticommuting Majorana-time-
reversal symmetries fTp1

1 ; Tp2

2 ;…; Tpn
n g they respect, where pi ¼

� and ðT�
i Þ2 ¼ �1. We rigorously proved that there are two and

only two fundamental symmetry classes which are sign-problem-
free: the Majorana class and Kramers class, respectively. For the
former, Majorana-bilinear operators possess two MTR sym-
metries Tþ

1 and T−
2 with Tþ

1 T
−
2 ¼ −T−

2 T
þ
1 , and it is a genuinely

new sign-problem-free symmetry class introduced in Ref. [26],
qualitatively different from the latter, which is based on the
conventional Kramers-time-reversal symmetry studied in
Ref. [25].
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extensively during the past three decades. One naturally
asks if a more fundamental symmetry principle exists for
solving the fermion sign problem in models whose sign-
problem solutions remain unknown so far.
Recently, Majorana representation was first introduced

by three of us in Ref. [26] to solve the fermion sign problem
in models (including spinless and spinful fermion models)
which are beyond the Kramers method. Here we employ
time-reversal symmetry in Majorana representations [26] as
a fundamental and unifying principle to solve the fermion
sign problem. We first classify Majorana-bilinear operators
ĥ ¼ γThγ according to their Majorana-time-reversal (MTR)
symmetries, where hT ¼ −h is an antisymmetric matrix
and γT ¼ ðγ1;…; γ2NÞ are Majorana operators with
fγi; γjg ¼ 2δij [27], and then identify all symmetry classes
which must be sign-problem-free. Note that “time reversal”
here generally represents “antiunitary.” Because Majorana
operators are real, Majorana-time-reversal transformation
can be represented by T ¼ UK, where U are real orthogo-
nal matrices and K is complex conjugation with T2 ¼ �1

for UT ¼ �U. By systematically classifying Majorana-
bilinear operators according to the maximal set of anti-
commuting MTR symmetries they respect, we prove that
there are only two fundamental symmetry classes of models
which are sign-problem-free: the Majorana class and
Kramers class, respectively. Other sign-problem-free
symmetry classes have higher symmetries than the two
fundamental ones, as shown in Table I.
For the Majorana class, the Majorana-bilinear operators

possess two anticommuting symmetries Tþ
1 and T−

2 , where
ðT�

i Þ2 ¼ �1. Majorana-bilinear operators in this class can
always be transformed into two decoupled parts which are
time-reversal partners to each other such that it is sign-
problem-free [26]. For the Kramers class, from anticom-
muting T−

1 and T−
2 , the usual Kramers-time-reversal

symmetry can be identified so that they are sign-prob-
lem-free. Recently, various correlated models in the
Kramers class were studied by QMC simulation to inves-
tigate high-temperature superconductivity near quantum
critical points (QCPs) [28–34].
It is worth pointing out that sign-problem-free models in

the genuinely new Majorana class include interacting
topological superconductors with helical Majorana edge
states [35–37] and the minimal model for charge-4e
superconductors [38]. Note that the sign problems of these
models are beyond applicability of other known
approaches, especially those requiring particle-number
conservation [39,40]. In contrast, the Majorana approach
here is general and can be applied to generic models
whether the particle number is conserved or not. As an
application of our Majorana approach, we have performed
large-scale sign-problem-free Majorana QMC simulations
on interacting time-reversal-invariant topological pþ ip
superconductors of spin-1=2 electrons and found that with
increasing interactions the system encounters a quantum

phase transition from a topological nontrivial supercon-
ducting phase to a topologically trivial one by sponta-
neously breaking time-reversal symmetry [41]. To the best
of our knowledge, it is the first time that a topological
quantum phase transition of spontaneous time-reversal
symmetry in superconductors can be studied by numeri-
cally exact and intrinsically unbiased simulations.
Majorana-time-reversal symmetry classes.—Time-

reversal symmetry plays an important role in classifying
random matrices as well as topological insulators or
superconducutors [42–46] and in avoiding the fermion
sign problem in QMC simulations [25]. The Kramers-time-
reversal symmetry [25] has been a successful guiding
principle for sign-problem-free QMC simulations.
Nonetheless, it requires particle-number conservation and
is then not the most general time-reversal symmetry one
can utilize to prevent the fermion sign problem [26]. Thus,
constructing a more fundamental and generic symmetry
principle to avoid the fermion sign problem is desired.
In Ref. [26] we proposed that time-reversal symmetry in

the Majorana representation can be used to avoid the sign
problem in interacting models. Namely, one can employ
Majorana fermions to write fermion-bilinear operators:
ĥðτiÞ≡ ĥi ¼ γThiγ, where γT ¼ ðγ11;…; γ1N; γ

2
1;…; γ2NÞ

and hi is a 2N × 2N matrix. In the case that

hi ¼
�
Bi 0

0 B�
i

�
; ð1Þ

ρ ¼ Tr
QNτ

i¼1 exp½ĥi� is positive definite because of the
Majorana-time-reversal symmetry Tþ ¼ τxK, under which
γ1i → γ2i , γ

2
i → γ1i , and Bi → B�

i [26]. Here τα are Pauli
matrices acting in the Majorana space (1, 2). Because no
coupling between γ1 and γ2 exists in ĥi, tracing over the
Hilbert space of γ1 and γ2 can be done separately and ρ2 ¼
ρ�1 due to the Majorana-time-reversal symmetry such
that ρ ¼ ρ1ρ2 > 0.
Note that hi in Eq. (1) also respects another Majorana-

time-reversal symmetry T− ¼ iτyK, besides Tþ ¼ τxK.
Moreover, T−Tþ ¼ −TþT−. One naturally asks the follow-
ing question: Can any Majorana-bilinear operator respect-
ing anticommuting Tþ and T− symmetries be transformed
into the form in Eq. (1) such that it is sign-problem-free?
The answer is positive, as shown below. This further
motivates us to ask another question: Can anticommuting
Majorana-time-reversal symmetries provide a fundamental
principle to classify Majorana-bilinear operators such that
general sufficient conditions for sign-problem-free models
can be constructed? Our answer is also positive, as we
prove below.
As Majorana fermion operators are real, Majorana-time-

reversal symmetry can be represented by T� ¼ U�K,
where ðT�Þ2 ¼ �1 and U� is a real orthogonal matrix
satisfying ðU�ÞT ¼ �U�. We propose to systematically
classify generic Majorana-bilinear operators ĥi according
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to the maximal set of anticommuting MTR symmetries
C ¼ fTp1

1 ;…; Tpn
n g they respect, namely, ½Tpj

j ; hi� ¼ 0 and

Tpi
i T

pj

j þ T
pj

j Tpi
i ¼ pi2δij, where pi ¼ �. Because of the

sign choices of pi ¼ �, there are totally nþ 1 distinct
symmetry classes for each n. For n ¼ 0, there is only one
symmetry class fIg, which means that no Majorana-time-
reversal symmetry can be found for those Majorana-
bilinear operators; while for n ¼ 1 there are two symmetry
classes: fTþ

1 g and fT−
1 g. For n ¼ 2 we have three sym-

metry classes: fTþ
1 ; T

þ
2 g, fTþ

1 ; T
−
2 g, and fT−

1 ; T
−
2 g. Here,

we are concerned with only the symmetries of hi; namely,
we assume that hi are random matrices except respecting
the specified set of anticommuting MTR symmetries. This
classification scheme using anticommuting symmetries is,
in spirit, similar to the one employed by Kitaev using the
Clifford algebra to classify random matrices and construct
the periodic table of topological insulators and super-
conductors [44].
Obviously, if a symmetry class C is sign-problem-free,

any higher symmetry class C0 whose symmetries can
generate all the symmetries of C must be sign-problem-
free. For instance, the symmetry class fTþ

1 ; T
þ
2 ; T

þ
3 ; T

þ
4 g is

higher than the symmetry class fTþ
1 ; T

−
2 g, because T−

2 in
the latter can be generated from the former by identifying
T−
2 ¼ Tþ

2 T
þ
3 T

þ
4 . If the former is sign-problem-free, the

latter must be sign-problem-free. Consequently, it would be
sufficient to derive all the fundamental symmetry classes
which are sign-problem-free.
“Periodic table” of fermion sign problem.—It was

known that the fermion sign problem can appear in the
following three symmetry classes: fIg, fTþ

1 g, and fT−
1 g, as

sign-problematic examples in these three symmetry classes
are known. For instance, Tr exp½xγ1γ2� ¼ 2 cos x, which is
negative for x ∈ ðπ

2
; πÞ, even though the Majorana-bilinear

operator xγ1γ2 respects the T−
1 symmetry (γ1 → γ2,

γ2 → −γ1, plus complex conjugation). This illustrates that
the symmetry of T−

1 cannot guarantee sign-problem-free.
Consequently, symmetry itself for these classes fIg, fTþ

1 g,
fT−

1 g is not sufficient to guarantee the absence of the sign
problem. We then move to symmetry classes with n ¼ 2

anticommuting symmetries: fTþ
1 ; T

þ
2 g, fTþ

1 ; T
−
2 g, and

fT−
1 ; T

−
2 g. The symmetries in the class fTþ

1 ; T
þ
2 g cannot

guarantee sign-problem-free, because there are known
examples with the fermion sign problem in this class, as
shown explicitly below. How about the other two classes
fTþ

1 ; T
−
2 g and fT−

1 ; T
−
2 g? It turns out these two are

fundamental symmetry classes which are sign-problem-
free, as we shall prove below.
If Majorana-bilinear operators ĥi respect MTR sym-

metries in one of the two symmetry classes fTþ
1 ; T

−
2 g and

fT−
1 ; T

−
2 g, ρ ¼ Tr

QNτ
i¼1 exp½ĥi� > 0. These two are the only

fundamental symmetry classes which are sign-problem-
free. We shall prove this below for the two symmetry
classes separately. We call the former symmetry class as the

Majorana class, while the latter one as Kramers class for
reasons which will be clear later.
Majorana class.—In the Majorana class, the random

matrix hi respects two Majorana-time-reversal symmetries
Tþ
1 ¼ Uþ

1 K and T−
2 ¼ U−

2K, where Uþ
1 is a real-symmetric

orthogonal matrix but U−
2 a real antisymmetric orthogonal

matrix. From these two time-reversal symmetries, one can
construct a unitary symmetry P ¼ Tþ

1 T
−
2 ¼ Uþ

1 U
−
2 . It is

straightforward to see that P is a real symmetric matrix
satisfying P2 ¼ 1. Consequently, the eigenvalues of P are
�1. As ½P; hi� ¼ 0, we can use P to block-diagonalize hi.
We denote the eigenvectors of P with eigenvalue þ1 as

χa, namely, Pχa ¼ χa, where a ¼ 1;…; N. Because P is a
real-symmetric matrix, χa can be chosen to be real, i.e.,
χ�a ¼ χa. Since T

þ
1 satisfies fTþ

1 ; Pg ¼ 0, Tþ
1 χa are eigen-

vectors of P with eigenvalue −1. Now, we are ready to
use the basis ~χ ¼ ðχ1;…; χN; T

þ
1 χ1;…; Tþ

1 χNÞ to block-
diagonalize the 2N × 2N matrix hi, as follows:

~χThi ~χ ¼
�
Bi 0

0 B�
i

�
: ð2Þ

Consequently, the Boltzmann weights Tr
QNτ

i¼1 exp½ĥi� are
positive definite, as required by the time-reversal symmetry
between the two decoupled blocks Bi and B�

i . Because
charge conservation is not required for this symmetry class
of fTþ

1 ; T
−
2 g, it is a new sign-problem-free symmetry class

which was first studied in Ref. [26]. We call it the
Majorana class.
Kramers class.—From T−

1 and T−
2 symmetries, a unitary

symmetry Q ¼ T−
1 T

−
2 can be derived. Because Q is anti-

symmetric, namely, QT ¼ −Q, one can construct a charge
operator Q̂ ¼ γTðiQÞγ such that ½Q̂; ĥi� ¼ 0. It is clear that
the combination of T−

1 and Q charge conservation in this
symmetry class is equivalent to the Kramers symmetry,
since ½T−

1 ; iQ� ¼ 0 and ðT−
1 Þ2 ¼ −1. The absence of the

fermion sign problem has been shown in Ref. [25] accord-
ing to the observation of the Kramers pairs in eigenvalues.
Because of the Kramers symmetry, we denote this sym-
metry class as the Kramers class.
For symmetry classes with n ≥ 3, it turns out that all of

them, except only one class fTþ
1 ; T

þ
2 ; T

þ
3 g, can generate the

symmetries in either the Majorana class or the Kramers
class. For instance, the symmetry class fTþ

1 ; T
þ
2 ; T

−
3 g has

higher symmetry than fTþ
1 ; T

−
2 g and fTþ

1 ; T
−
2 ; T

−
3 g higher

than both fTþ
1 ; T

−
2 g and fT−

1 ; T
−
2 g. The only remaining

unclear class is fTþ
1 ; T

þ
2 ; T

þ
3 g, which cannot generate

fTþ
1 ; T

−
2 g or fT−

1 ; T
−
2 g. Even though the symmetry class

fTþ
1 ; T

þ
2 ; T

þ
3 g has relatively high symmetries, it can still

suffer from the fermion sign problem, as we show below
that there exist explicit examples in this symmetry class
which are sign-problematic.
Now we explicitly demonstrate that the two symmetry

classes fTþ
1 ; T

þ
2 g and fTþ

1 ; T
þ
2 ; T

þ
3 g can be sign-problem-

atic by considering the spin-1
2
repulsive Hubbard model
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away from half filling as an example. For the repulsive-U
Hubbard model

H ¼ −t
X
hijiσ

½c†iσcjσ þ H:c:� þ U
X
i

ni↑ni↓ − μ
X
iσ

niσ; ð3Þ

where U > 0, μ ≠ 0, and σ ¼ ↑;↓, we obtain the
following decoupled Majorana-bilinear Hamiltonian ĥn
after utilizing the Majorana representations cσ¼ðγ1σþ
iγ2σÞ=2 and performing a Hubbard-Stratonovich (HS)
transformation: ĥn¼−ð~t=2ÞPhijiγTi σ

0τyγjþ
P

i½ð ~μ=
4ÞγTi σ0τyγi−λϕn

i γ
T
i iσ

yτzγi�, where ϕn
i are auxiliary fields

on site i at imaginary time τn, γTi ¼ ðγ1i↑; γ1i↓; γ2i↑; γ2i↓Þ, σa is
Pauli matrix in spin space and τa inMajorana space [41]. It is
straightforward to show that ĥn possesses three MTR
symmetries Tþ

1 ¼ σxτxK, Tþ
2 ¼ σzτxK, and Tþ

3 ¼
σ0τzK. Even though respecting these symmetries, the
appearance of the sign problem in this decoupled channel
for the doped repulsive Hubbard model is well known. In
order to further confirm it, we have also computed the
Boltzmann weights for different auxiliary-field configura-
tions and find that negative weights can indeed appear.
Namely, models in the symmetry class fTþ

1 ; T
þ
2 ; T

þ
3 g can be

sign-problematic. Since the class fTþ
1 ; T

þ
2 ; T

þ
3 g has higher

symmetries than fTþ
1 ; T

þ
2 g, the latter is also sign-

problematic.
Combining the results above, we have shown that there

are two and only two fundamental sign-problem-free
symmetry classes: the Majorana class and the Kramers
class. The periodic table of symmetry classes which are
sign-problem-free or sign-problematic is shown in Table I.
It provides a fundamental principle to identify sign-prob-
lem-free interacting fermion models.
Interacting topological superconductors in the Majorana

class.—So far, novel interaction effects in topological super-
conductors have not been investigated by large-scale QMC
simulation mainly due to the lack of such sign-problem-free
models, although interacting topological insulators have
been much studied by sign-problem-free QMC simulations
[47–54]. As mentioned above, there is no requirement of
charge conversation for models in the Majorana class.
Consequently, interesting sign-problem-freemodels describ-
ing interacting superconductors may be identified in this
class such that we can study a strong correlation effect in
superconductors using sign-problem-free QMC simulations.
Indeed, we have found interacting models of topological
superconductors with helicalMajorana edge states which are
sign-problem-free in the Majorana class.
We first consider the Hamiltonian describing a topo-

logical superconductor of spin-1=2 electrons on the square
lattice with time-reversal symmetry:

H ¼
X
ij;σ

½−tijc†iσcjσ þ Δij;σc
†
iσc

†
jσ þ H:c:� −U

X
i

ni↑ni↓;

ð4Þ

where c†iσ creates spin-1=2 electrons with spin polarization
σ ¼ ↑;↓, niσ ¼ c†iσciσ , tij ¼ t is nearest-neighbor hopping,
and tii ¼ μ is the chemical potential. When Δij;σ ¼ Δ for
j ¼ iþ x̂ and Δij;σ ¼ iσΔ for j ¼ iþ ŷ, the Hamiltonian
in Eq. (4) describes a helical topological superconductor
[44–46] with (pþ ip) triplet pairing of spin-up electrons
and (p − ip) triplet pairing of spin-down electrons, which
hosts helical Majorana edge states protected by the
Majorana-time-reversal symmetry T− ¼ iσyτzK, where σi

acts in spin space and τi in the Majorana space. Besides T−,
it also possesses a unitary symmetry P ¼ σz, such that we
can construct another Majorana-time-reversal symmetry
Tþ ¼ PT− ¼ σxτzK. In the complex fermions basis, these
two anticommuting TR symmetries are Tþ ¼ σxK and
T− ¼ iσyK, where σa is the Pauli matrix acting in spin
space ðc↑; c↓Þ. Note that the unitary symmetry P ¼ σz is
not a U(1) symmetry conserving the total Sz, because the
triplet pairing in the Hamiltonian breaks the U(1) sym-
metry. Instead, it conserves only the spin parity ð−1ÞN↓,
where N↓ is the number of spin-down electrons. The
topological classification of superconductors respecting
the time-reversal symmetry and the spin-parity symmetry
in the noninteracting limit is Z. In the presence of
interactions, its topological classification was shown to
be Z8 [35–37].
For the Hubbard interactions, we perform the following

HS transformation:

eðU=4ÞΔτiγ1i↑γ2i↑iγ1i↓γ2i↓ ¼
X
ϕi¼�1

Aeλϕiðiγ1i↑γ2i↑þiγ1i↓γ
2
i↓Þ; ð5Þ

where ϕi represent auxiliary fields living on site i, Δτ is the
imaginary time slice in the Trotter decomposition,
λ ¼ 1

2
cosh−1ðeUΔτ=2Þ, and A ¼ 1

2
e−UΔτ=4. It is clear that

the decoupled Majorana-bilinear operators also respect
both Tþ ¼ σxτzK and T− ¼ σxτzK such that this model
is sign-problem-free in the Majorana class. We performed
projector QMC [10–12] simulations which show that, with
increasing U, the system undergoes a topological quantum
phase transition from a topological SC to a trivial SC which
breaks time-reversal symmetry spontaneously [41], as
schematically shown in Fig. 1. The universality class of
this topological phase transition is also obtained by our
QMC simulations [41].
Concluding remarks.—We have shown that anticom-

muting MTR symmetries can provide a fundamental
principle to identify sign-problem-free interacting models.

FIG. 1. The quantum phase diagram of interacting topological
superconductors with a topological quantum phase transition as
well as the nature of the quantum critical point have been studied
by our sign-problem-free QMC simulations [41].
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Note that this does not contradict the no-go theorem [24], as
the symmetry principle introduced here may not directly
provide recipes of the sign problem for all models.
Assuming no other requirement than respecting a set of
anticommuting MTR symmetries, we have proved that
there are two and only two fundamental sign-problem-free
symmetry classes.
Here, we focus on the generic symmetry principle for

sign-problem-free models. In the case that the matrices hi
are not fully random besides respecting the required
symmetries, it is possible that sign-problem-free models
can be found in the symmetry classes fIg, fTþ

1 g, fT−
1 g,

fTþ
1 ; T

þ
2 g, and fTþ

1 ; T
þ
2 ; T

þ
3 g [20,55]. For instance, it was

shown in Refs. [39,55] that certain models in the symmetry
class fTþ

1 g with special conditions besides the symmetry
requirement could be sign-problem-free. In other words, it
provides hope to avoid the fermion sign problem in various
interesting models, such as the repulsive Hubbard model
away from half filling [12], by utilizing a combination of
special features and symmetry principles. We believe that
the Majorana-time-reversal symmetry principle has shed
new light on avoiding the fermion sign problem in strongly
correlated models describing systems such as high-
temperature superconductors and featuring exotic quantum
critical phenomena [56–59].
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