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It has been a long time belief that, with increasing the scattering strength of multiple scattering media,
the transport of light gradually slows down and, eventually, comes to a halt corresponding to a localized
state. Here we present experimental evidence that different stages emerge in this evolution, which cannot be
described by classical diffusion with conventional scaling arguments. A microscopic model captures the
relevant aspects of electromagnetic wave propagation and explains the competing mechanisms that prevent
the three-dimensional wave localization. We demonstrate that strong evanescent-field couplings hinder the
localization of wave resonances and, therefore, impede the slowing down of diffusion. The emerging out of
equilibrium steady-state process resembles the diffusion of classical particles in spatially correlated random
potentials and the thermalization of matter waves due to atomic collisions.
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Regimes of electromagnetic (EM) wave propagation
range from quasiballistics to diffusive to different kinds
of anomalous diffusion including the progression towards a
complete arrest of propagation [1,2,3]. Nevertheless,
describing the complicated multiple scattering processes
requires significant simplifications. A careful examination
of aspects specific to EM fields has recently led to the
discovery of new phenomena [4,5,6].
When EM waves encounter complex media, the proper-

ties of emerging radiation depend not only on the structural
characteristics of the material system but also on the scales
of interaction (temporal and spatial). Evidence for different
regimes of propagation is routinely presented by modifying
material systems and examining the corresponding forms of
interaction [7,8]. The effect of the interaction scales is
analyzed by imposing macroscopic constraints on the size
of the system, which usually leads to complications
unrelated to the intrinsic nature of interaction, e.g., boun-
dary effects [9,10,11].
In fact, the properties of EM fields evolve as the radiation

penetrates deeper into a medium. The simplest example is
the gradual change from ballistic to diffusive regimes of
propagation [12,13,14]. Here we will show that light
encounters different stages of evolution even in its diffusive
propagation. We will demonstrate that these “phase tran-
sitions” in the transport of light are direct consequences of
competing mechanisms of interaction between light and
complex media.
When disregarding the wave properties of light, the

diffusive transport can be modeled as a random walk of
photons with an associated diffusion coefficient D describ-
ing the root mean square spread of the photon density
[3,15]. In a lossless, semi-infinite medium, the path-length
distribution of photons returning to the same location of an
impulsive source is pðsÞ ∝ D−ð3=2Þs−ð5=2Þ expð−ze2=4DsÞ,

where ze accounts for boundary-specific effects [16]. For
asymptotically large s, the −5=2 power-law decay repre-
sents the hallmark of “normal” photon diffusion. Examples
are plentiful ranging from random lasing [17] to image
reconstruction, biology, and medicine [18,19].
First transition: From normal to anomalous diffusion.—

In strongly multiply scattering media, wave properties
cannot be neglected anymore. Constituent scatterers start
acting collectively, modifying the nature of local interfer-
ences. Moreover, waves can propagate along reciprocal
multiple scattering paths, generating additional interfer-
ences seen as closed loops in their trajectories [20,21,22].
This increased probability of returning to the starting point
effectively slows down the normal diffusion.
Aside from the deterministic account of diffusion, light

propagation can be described stochastically as a random
walk of photons. Then, a departure from normal diffusion is
portrayed as an anomalous distribution of scattering steps
leading to superdiffusion [23] or as a distribution of waiting
times before random jumps occur. The latter is due to
either long dwell times (scattering resonances) or looping
(recurrent scattering), rendering the propagation subdiffu-
sive [24,25].
The slowing down of normal diffusion encountered in

strongly scattering media can be modeled as a scale-
dependent diffusion process. Based on the scaling theory
of localization, the optical diffusion coefficient varies with
the size L of the system as D ¼ D0lð1=ξþ 1=Lþ 1=LaÞ,
where l is the transport mean free path while ξ and La are
the coherence and absorption lengths, respectively
[26,27,28]. In reflection, the effective size L of the explored
medium is determined by the root mean square (rms)
distribution of the energy spread R ¼ ffiffiffiffiffiffiffiffi

6Dt
p

. Thus before
reaching localization, L ≪ ξ, for lossless systems one
could show that the path-dependent diffusion coefficient
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becomesDðsÞ ∝ ðD2
0l

2Þ1=3s−1=3, which for, large s, leads to
log½pðsÞ� ¼ B − 2 logðsÞ. In this regime the diffusion is
anomalous, and the path-length distribution decays as s−2.
As depicted in Fig. 1, this change in the pðsÞ behavior
indicates the first phase transition in the diffusion of light:
from normal to anomalous.
Second transition: From anomalous back to normal.—In

densely packed composite media, the individual scatterers
are in close proximity and become optically connected
through strong near-field (NF) interactions. This situation
leads to a new regime of transport where the energy diffuses
also through additional evanescent channels [5]. Moreover,
reports also suggest that the vector character of light has a
critical role in establishing this interaction regime [4,6]. All
these very recent developments may help clarify the elusive
strong localization of light in three-dimensional photonic
structures [29].
At high concentrations, the recurrent scattering sequen-

ces discussed before can be imagined as loops of energy
flows inside the medium, which determine the overall
subdiffusive nature of energy transport. The NF coupling,
on the other hand, has the tendency to destroy these loops
by leaking energy into new channels [5]. The longer the
paths inside the medium, the more loops can be created.
However, the NF events are also more probable, and, as a
result, the loops of energy flows are destroyed more and
more, and the diffusive propagation gradually returns to
normal. This constitutes a second phase transition in the
diffusion of light: from anomalous to normal.
The evolution of path-length distribution through these

phase transitions is generically depicted in Fig. 1. Let us now
comment on the meaning of the extrapolation constants A
andC. It is easy to show thatA;ðCÞ¼ log½ð4πDA;ðCÞÞ−3=2ze�,
whereDA andDC are the normal diffusion coefficients before
the first and after the second transition, respectively. It is
evident that DC < DA. This means that, even though the
normal diffusion is eventually recovered, because of the
slowing down at intermediate ranges, light practically
expands over larger areas at a lower pace than if the diffusion

would have been normal all along. This could open up new
possibilities to control the large scale propagation.
We also note that for any diffusion, including the

“passive” diffusion of photons, one can associate an
effective temperature at which the process evolves [30].
Then, the return to normality in the region (γ) corresponds
to reaching the thermodynamic equilibrium at large scales.
Moreover, one can argue that the diffusing photons reach
thermodynamic equilibrium at lower effective temperatures
because of the “cooling down” during the evolution at
intermediate scales (β).
The other extrapolation constant in Fig. 1 is B ¼

logf½4πðD2
Al

2=6Þ1=3�−3=2zeg, and, from A − B ∝ logðsIÞ, it
follows that log sI ∝ l2=DA. It is interesting to note that
C − B ∝ log sII measures in fact the “duration” or the spatial
extent of the anomalous diffusion sII ¼ sIðDA=DCÞ3, which
is accessible experimentally aswewill show in the following.
Experimental demonstration.—The subdiffusive behav-

ior of light has been demonstrated in a number of photonic
structures [28]. Here we establish experimentally the
presence of the second phase transition. Usually, light
transport in disordered scattering media is examined by
techniques providing macroscopically averaged properties
such as transmission. Thus, one cannot say much about the
way the diffusion evolves in the steady state. Clarifying this
evolution requires access to detailed information about the
distribution of paths the optical waves take throughout the
medium. A direct measurements of the probability density
function of radiation path lengths can be performed
interferometrically [31].
Using a broadband light source in conjunction with a

single-mode fiber-optic-based Michelson interferometer as
illustrated in Fig. 2, we directly infer the distribution of path
lengths of multiply scattered light. Notably, dynamic ranges
of more than 5 orders of magnitude can be readily obtained
with a corresponding temporal resolution of 30 fs. In back-
scattering from semi-infinite media, the coherence gating

FIG. 1. Distinct regimes of light propagation are characterized
by path-length distributions having specific power-law depend-
ences. Phase transitions may occur between normal (α, γ) and
anomalous (β) diffusions.
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FIG. 2. A single-mode fiber-based low-coherence interferom-
eter allows the direct measurement of pathlength distributions in
reflection from a semi-infinite medium. An ensemble average is
created over measurements at different locations.
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permits isolating the contribution from optical paths of
specified length s, and, therefore, the corresponding prob-
ability densitypðsÞ is directly determined. Themeasurement
configuration corresponds to the situation where the point
source and point detector coincide. An ensemble average is
constructed over realizations of the medium or over mea-
surements at different locations as suggested in Fig. 2.
To study systematically the occurrence of these phase

transitions, we examined solid media which were specifi-
cally designed to maintain prescribed volume fractions of
well-dispersed, alumina surface-treated TiO2 submicron
particles. Here we present data on samples composed of
5%–50% volume fractions of 300 nm diameter TiO2

particles (DuPont, R-706), embedded into a polymer matrix
with a refractive index of 1.5. Spectra were recorded using a
broadband source with a bandwidth of 30 nm centered on a
wavelength of 1310 nm. Measurements were performed
over more than 600 different regions of the samples, to
ensure the appropriate ensemble average.
The main results are summarized in Fig. 3. As explained

before, the optical path-length distribution associated with
normal diffusion through a semi-infinite medium should
exhibit an s−5=2 asymptotic dependence. This is exactly
what is observed for low TiO2 concentrations for more than
two decades of path lengths. However, as the concentration
of particles increases, this behavior begins to change: In the
short path-length domain, the power-law exponent starts to
deviate from −5=2 and approaches −2. This evolution
towards a time-dependent diffusion coefficient is antici-
pated according to theories on wave localization, as we
discussed before [28]. The progression is more evident as
the TiO2 concentration increases, indicating significant
contributions from recurrent scattering or loops of energy
flows. This unmistakable subdiffusive behavior of light
propagation in 3D random media is a clear signature of an
incipient regime where coherent wave effects cannot be
neglected anymore.
The most remarkable in Fig. 3 is nevertheless the

conversion back to an asymptotic s−5=2 decay. This cross-
over represents the first experimental evidence for the
second phase transition from anomalous back to normal
diffusion, which we anticipated in the preceding discus-
sion. Recovering the diffusive behavior for longer optical
paths is a consequence of the trade-off between the
competing mechanisms of recurrent scattering and NF
coupling, as we will discuss in the following.
Discussion.—Let us now discuss in more detail the

conditions in which these two phase transitions occur. The
probability for a wave to return close to its starting point
(recurrent scattering) should be independent of the geometry
of a measurement. This probability is determined solely by
the ratio between the trajectory volume and the volume the
light explores inside the multiple scattering medium [32].
In reflection from a semi-infinite medium, longer paths
penetrate through larger volumes, and, therefore, the size

of the explored medium evolves as VmðsÞ ∝ L3ðsÞ. The
linear scale of this mediumexpands asLðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

6DðtÞtp
with

a diffusion coefficient DðtÞ ¼ ðD2
Bl

2=6Þ1=3t−1=3. It then
follows that LðtÞ ¼ ½6ðD2

Bl
2=6Þ1=3t−1=3t�1=2 ¼ ffiffiffi

63
p

DBlt1=3,
which, in terms of the length of trajectories, means that
L3ðsÞ ¼ 6ðDBlÞs=c. In these conditions, the probability of
recurrent scattering becomes

p× ¼ Vtr

VmðsÞ
¼ λ2s

L3
¼ cλ2

6lDB
¼ λ2

2l2
; ð1Þ

which, notably, is independent of the path length, because, in
reflection, there are no constraints on possible trajectories.
The situation is quite different when the size of the explored
medium is a constant V, as in the case of transmission
measurements. The probability of a trajectory crossing in this
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FIG. 3. Experimental probability distributions of path lengths
corresponding to semi-infinite random media comprising dis-
persions of TiO2 particles with different volume fractions as
indicated. The blue and red dashed lines indicate the normal and
the subdiffusive regimes, respectively. The dotted lines at 233.6,
326.7, and 395.9 μm indicate the sII values corresponding to
30%, 40%, and 50% volume fractions of TiO2 particles,
respectively.
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case is given by p× ¼ Vtr=V ¼ λ2s=V ∝ s, which depends
linearly on the length of trajectories because of the macro-
scopic constraint imposed by the finite size of the medium.
Let us now analyze the near-field coupling, the com-

peting mechanism that inhibits recurrent scattering. At high
volume fractions of particles, the energy can leak out of the
diffusive channels because of the near-field interactions
between scatterers situated at less than a wavelength apart.
To determine the associated probability, let us consider a
typical propagation channel of length s and cross section
λ2. Because of NF interactions, energy can leak out of this
channel at s=λ locations. The strength of NF coupling to
particles outside the trajectory is measured by the total area
ANF of potential interactions, which, in turn, is determined
by the size of the near-field cross section σNF and the
number of such possible events. In other words, ANF ¼
σNFð3n0λ3Þ. Note that, aside from optical size, the near-
field cross section σNF accounts for angular and polariza-
tion averaging [5].
At each location along the trajectory, the NF coupling

process happens with an efficiency dictated by the ratio
between ANF and the total area A ¼ 2πλ2 surrounding a
typical location. Thus, the probability of energy leaking
along the entire trajectory of length s is

Pleak ¼
3πn0λ3 × σNF

2πλ2
s
λ
¼ 3

2
n0σNFs; ð2Þ

which does increase with the length of the trajectory as
opposed to the crossing probability in Eq. (1). This means
that, as the path length through the medium grows, the rate
at which loops are destroyed can exceed the rate at which
they are created. Eventually, the “anomaly” caused by
recurrent scattering ceases and the diffusion recovers its
normal behavior with a diffusion constant that is scale
independent. This is the second phase transition of light.
The different stages of transport evolution are schemati-
cally illustrated in Fig. 4.
It is also instructive to examine these two probabilities in

the context of the number density of scattering centers.
Clearly, because l ∼ 1=n0, the probability of recurrent
scattering p× in Eq. (1) depends quadratically on concen-
tration, p× ∼ n20. The leaking probability, on the other hand,
grows linearly with both n0 and s, pleak ∼ sn0 as seen in
Eq. (2). As the threshold for the second phase transition can
be set when these two probabilities become comparable, it
follows that

sII ¼
2λ2σ2n0
3σNF

: ð3Þ

It can be concluded that this transition happens at larger
and larger path lengths when n0 increases, as we also
observed experimentally. When using Eq. (3) for 30%,
40%, and 50% volume fractions of spherical TiO2

particles, one finds that SII is, respectively, 227.7, 303.6,

and 379.5 μm, in very good agreement with the sII
extracted experimentally and shown in Fig. 3.
In closing, we comment on diffusion as a general

concept associated with evolution. Most common is, of
course, the particle diffusion starting from the Brownian
one, but the concept expands from social phenomena to, of
course, waves. Waves bring in certain specific manifes-
tations, but the parallel with particle diffusion is always
meaningful and instructive. In this context, the two phase
transitions in the diffusion of light discussed here bear a
strong similarity to the phenomenon of particle diffusion in
spatially correlated random potentials [33–36]. At short
times, particles execute a free, Brownian-like diffusion
before encountering any influence from the external,
constraining potential. However, once the spatial dispersion
reaches scales comparable with the correlation length of
this potential, the diffusion starts to slow down. One could
argue that, at these intermediate scales, the particles’
diffusion is somewhat “caged.” This can happen because
an externally applied random potential [37–39], structural
inhomogeneity of gel-like media through which particles
diffuse [40–42], or simply because of the direct influence of
particle crowding [43,44]. In the long-time limit, the
particles eventually tunnel through these potential cages
and the normal diffusion recovers, as expected at the
asymptotic thermodynamic equilibrium. These three
regimes of diffusion are equivalent to the three stages of
path-length evolution depicted in Figs. 1 and 4.
The different evolution stages of EM wave transport

also bear similarities to the thermalization of matter waves
due to atomic collisions. In this case, even for a weak

FIG. 4. Competing mechanisms of interaction dominate differ-
ent stages of transport evolution. Initially, at scales (α) the wave
expands normally but then, at larger scales (β), loops of energy
flow are created with a certain probability. The competing
mechanism of energy leaking destroys these loops and dominates
at even larger scales (γ) of interaction.
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interaction, an atomic cloud released in a disordered
potential never reaches a localized stationary state [45].
Conclusions.—Our results demonstrate the existence of

unexplored regimes for wave propagation through complex
media. Going beyond traditional random walk descriptions,
the circumstances we created provide access to new aspects
of the universal process of diffusion in external potentials.
The process is similar to the diffusion of particles

subjected to additional time-dependent random potentials.
In the case of electromagnetic waves, the locally strong
interferences create an effective random potential that
constrains the overall diffusion of waves. Our results
demonstrate that the average residence time in this con-
fining potential is regulated by the strength of the inherent
evanescent coupling between microscopic elements of the
complex medium. In particular, we have shown that strong
recurrent scattering due to on-shell propagating fields is
impeded by strongly localized evanescent couplings (off-
shell wave manifestations). The fact that the transport of
optical waves cannot slow down indefinitely is of high
relevance for the elusive Anderson localization of light in
three-dimensional media [46].
We presented a microscopic model that describes the

diffusion of electromagnetic waves in random media and
provides a familiar thermodynamical description similar to
an equilibrium fluctuation-dissipation relation. Aside from
its fundamental relevance, understanding all the wave
aspects governing such interactions could lead to new
means to engineer materials where the nature and the extent
of anomalous transport can be controlled at will.
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