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We perform the calculation of all relativistic and quantum electrodynamic corrections of the order of
α6 m to the ground electronic state of a hydrogen molecule and present improved results for the dissociation
and the fundamental transition energies. These results open the window for the high-precision spectroscopy
of H2 and related low-energy tests of fundamental interactions.
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The hydrogen atom and various hydrogenic systems like
positronium, muonium, muonic hydrogen, and Heþ, due to
highly accurate theoretical predictions [1], are considered
for the determination of fundamental physical constants [2]
and for the low-energy tests of the Standard Model [3],
including possible violation of the lepton universality
[4–6]. However, they are frequently limited by uncertain-
ties in the nuclear structure or natural lifetime of the
system. The 1S − 2S transition in H is the best example,
where the precision of the measurement fð1S − 2SÞ ¼
2466061413187035ð10Þ Hz [7] exceeds by orders of
magnitude any theoretical predictions. This is because of
the relatively large theoretical uncertainties in the proton
structure and resulting inaccuracies in fundamental con-
stants. The lack of another sharp transition in the hydrogen
makes the determination of the Rydberg (R∞) constant,
which transforms atomic units to inverse of the transition
wavelength, much less accurate than it would be if another
such transition was available. Here we point out that the
dissociation energy of H2 can serve this purpose, as it is
stable in the ground electronic state and can be calculated
with sufficient precision. So having two accurate and
calculable transitions, the two unknowns R∞ and rp can
be determined, which among others, would help resolve the
proton charge radius puzzle. Other alternative systems for
which high precision calculations are possible include the
helium ion Heþ [8], heavy hydrogenlike ions [9], and the
hydrogen molecular ion [10,11].
The calculations for the hydrogen molecule have never

been considered to be as accurate as for the hydrogen atom
due to the lack of an analytic solution of the Schrödinger
equation. However, the numerical solution of this equation,
as has been shown recently [12], can be as accurate as
10−12, and, thus, it will not limit the accuracy of theoretical
predictions. There are obviously various corrections, such
as relativistic and quantum electrodynamic (QED) ones.
So far, they have been calculated up to α5m order [13],
and only in the adiabatic approximation. Beyond this

approximation, namely, the combined nonadiabatic and
relativistic effects, have not yet been obtained and they will
limit the accuracy of current predictions. Here we calculate
one of the most difficult, the α6m correction, using the so-
called nonrelativistic QED approach. Next, we point out
that when the higher order α7m correction is determined,
energies of the hydrogen molecule can be obtained almost
as accurately as those of the hydrogen atom alone, and
thus may be used for determination of the R∞ constant.
Meanwhile, on the basis of the α6m correction obtained
herein, we will present improved results for the dissociation
and the fundamental transition energies.
NRQED effective Hamiltonian.—Since there is no for-

mulation of QED theory based on a multielectron Dirac
equation with Coulomb interactions, we use an effective
nonrelativistic QED (NRQED) approach that is based on
the Schrödinger equation. According to QED theory, the
expansion of energy levels in powers of the fine structure
constant α has the following form:

EðαÞ ¼ Eð2Þ þ Eð4Þ þ Eð5Þ þ Eð6Þ þ Eð7Þ þOðα8Þ; ð1Þ

where EðnÞ is a contribution of order αn m and may include
powers of ln α. Each expansion term EðnÞ can be expressed
as an expectation value of some effective Hamiltonian
with the nonrelativistic wave function Φ. The first one,
Eð2Þ ≡ E0, is the eigenvalue of the nonrelativistic
HamiltonianH0. In the infinite nuclear mass approximation
(in theoretical units ℏ ¼ c ¼ 1)

H0 ¼
~p2
1

2m
þ ~p2

2

2m
þ V; ð2Þ

where

V ¼ −
ZAα

r1A
−
ZAα

r2A
−
ZBα

r1B
−
ZBα

r2B
þ α

r
þ ZAZBα

rAB
; ð3Þ
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r ¼ r12, and where indices 1 and 2 correspond to electrons,
whereas A and B correspond to nuclei. The next term of this
expansion Eð4Þ is the expectation value of the well-known
Breit-Pauli (BP) Hamiltonian Hð4Þ [14]. Eð5Þ is the leading
QED contribution, which is well defined and can also be
expressed in terms of matrix elements of somewhat more
complicated operators [13,15]. The calculation of the next
term in α expansion Eð6Þ is the subject of the present work.
This term can be represented as

Eð6Þ ¼ hHð6Þi þ
�
Hð4Þ 1

ðE0 −H0Þ0
Hð4Þ

�
; ð4Þ

where Hð6Þ is the effective Hamiltonian of order α6m. Its
derivation is presented in the following paragraph. Here,
the second-order contribution, and, correspondingly, Hð4Þ,
is split into two parts depending on the symmetry of
intermediate states.

EA¼
�
HA

1

ðE0−H0Þ0
HA

�
; EC¼

�
HC

1

E0−H0

HC

�
;

ð5Þ

where

HA ¼ −
p4
1

8m3
−

p4
2

8m3
−

α

2m2
pi
1

�
δij

r
þ rirj

r3

�
pj
2

þ πα

m2
δ3ðrÞ þ πZAα

2m2
δ3ðr1AÞ þ

πZAα

2m2
δ3ðr2AÞ

þ πZBα

2m2
δ3ðr1BÞ þ

πZBα

2m2
δ3ðr2BÞ; ð6Þ

and

HC ¼ ð~σ1− ~σ2Þ
2

�
ZA

4m2

�
~r1A
r31A

× ~p1−
~r2A
r32A

× ~p2

�

þ ZB

4m2

�
~r1B
r31B

× ~p1−
~r2B
r32B

× ~p2

�
þ 1

4m2

~r
r3
× ð~p1þ ~p2Þ

�
:

ð7Þ
The first term EA as well as hHð6Þi are separately divergent,
but their sum is finite. We follow the approach of Ref. [16]
and use the technique of dimensional regularization to
eliminate these divergences from the matrix elements.
HA in the above equation should therefore be written in
d dimensions, but for simplicity we write only the
d ¼ 3 form.
The effective Hamiltonian Hð6Þ is derived in an analo-

gous way as for the He atom in Ref. [16]. There is no
additional complication for the case of H2, except obvi-
ously for the presence of two Coulomb fields instead of
one. It is expressed as a sum of various contributions,
Hð6Þ ¼ HQ þHH þHR1 þHR2. HQ is a sum of all terms
that come from one- and two-photon exchange of the

low-energy photons k ∼ αm. We do not write their explicit
expression because it is too long. They are divergent at high
photon momenta, or equivalently at small distances r and
raX. This divergence cancels out with the second-order
contribution EA and with the hard three-photon exchange,
which in d ¼ 3 − 2ϵ dimensions is [17]

HH¼
�
4 lnm−

1

ϵ
−
39ζð3Þ
π2

þ32

π2
−6 lnð2Þþ7

3

�
πα3

4m2
δdðrÞ:

ð8Þ

Later, in Eq. (18) and Table I, we present a simplified and
regularized form of HQ. The remaining contributions
are radiative corrections, which at the order α6m are

TABLE I. Expectation values of operators entering Hð6Þ for the
1Σþ state at R ¼ 1.4 a:u: The last digit inQ9…28 is uncertain. The
following notation was used in the table: ~r ¼ ~r12 ¼ ~r1 − ~r2,

Vi ¼ 1=riA þ 1=riB, ~Vi ¼ ~riA=r3iA þ ~riB=r3iB, ~P ¼ ~p1 þ ~p2.

Operator Expectation value

Q1 ¼ 4πδ3ðr1AÞ 2.888 179 88(1)
Q2 ¼ 4πδ3ðrÞ 0.210 402 25(1)
Q3 ¼ 4πδ3ðr1AÞ=r2A 2.203 14
Q4 ¼ 4πδ3ðr1AÞ=r2B 2.778 58
Q5 ¼ 4πδ3ðr1AÞp2

2
2.952 30

Q6 ¼ 4πδ3ðrÞV1 0.604 74
Q7 ¼ 4πδð3ÞðrÞP2 0.859 90
Q8 ¼ 1=r 0.587 36
Q9 ¼ 1=r2 0.517 93
Q10 ¼ 1=r3 0.414 34
Q11 ¼ V2

1
4.852 07

Q12 ¼ V1V2 3.265 50
Q13 ¼ V1=r 1.193 32
Q14 ¼ V1V2=r 2.454 64
Q15 ¼ V2

1V2 8.525 27
Q16 ¼ V2

1=r 3.445 33
Q17 ¼ V1=r2 1.195 29

Q18 ¼ ~V1 · ~r=r3 0.406 32

Q19 ¼ ~V1 · ~r=r2 0.488 59

Q20 ¼ Vi
1V

j
2ðrirj − 3δijr2Þ=r 0.547 86

Q21 ¼ p2
2V

2
1

5.186 77
Q22 ¼ ~p1V2

1 ~p1 5.145 61
Q23 ¼ ~p1=r2 ~p1 0.554 62

Q24 ¼ pi
1V1ðrirj þ δijr2Þ=r3pj

2
0.237 37

Q25 ¼ Pið3rirj − δijr2Þ=r5Pj −0.190 40
Q26 ¼ pk

2V
i
1ðδjkri=r − δikrj=r

− δijrk=r − rirjrk=r3Þpj
2

−0.112 60

Q27 ¼ p2
1p

2
2

1.328 10
Q28 ¼ p2

1V1p2
2

5.208 25
Q29 ¼ ~p1 × ~p2=r~p1 × ~p2 0.386 62
Q30 ¼ pk

1p
l
2ð−δjlrirk=r3 − δikrjrl=r3

þ 3rirjrkrl=r5Þpi
1p

j
2

−0.160 82
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proportional to Dirac δ functions, and they are known from
the hydrogenic case. The one-loop correction is [1]

HR1 ¼
α3π

m2

�
427

96
− 2 lnð2Þ

�
½Z2

Aδ
3ðr1AÞþZ2

Aδ
3ðr2AÞ

þZ2
Bδ

3ðr1BÞþZ2
Bδ

3ðr2BÞ�

þ α3

m2

�
6ζð3Þ
π2

−
697

27π2
− 8 lnð2Þþ 1099

72

�
πδ3ðrÞ; ð9Þ

and the two-loop correction is [1]

HR2 ¼
α3π

m2

�
−
9ζð3Þ
4π2

−
2179

648π2
þ 3 lnð2Þ

2
−
10

27

�

× ½ZAδ
3ðr1AÞþZAδ

3ðr2AÞþZBδ
3ðr1BÞþZBδ

3ðr2BÞ�

þ α3

m2

�
15ζð3Þ
2π2

þ 631

54π2
− 5 lnð2Þþ 29

27

�
πδ3ðrÞ: ð10Þ

At this point we have considered all contributions of the
order of α6 m. The higher order term is estimated on the
basis of the dominant double logarithmic contribution,
which for ZA ¼ ZB ¼ 1 is

Hð7Þ≈−
α4

m2
ln2ðα−2Þ½δ3ðr1AÞþδ3ðr2AÞþδ3ðr1BÞþδ3ðr2BÞ�:

ð11Þ

Elimination of singularities.—The second-order matrix
element EA in Eq. (5) requires subtractions of 1=ϵ singu-
larities. For this we use the transformation (henceforth
atomic units will be employed)

HA ¼ H0
A þ fH0 − E0; Qg; ð12Þ

where

Q ¼ −
1

4

�
ZA

r1A
þ ZB

r1B
þ ZA

r2A
þ ZB

r2B

�
þ 1

2r
; ð13Þ

so that EA ¼ E0
A þ E00

A, where

E0
A ¼

�
H0

A
1

ðE0 −H0Þ0
H0

A

�
; ð14Þ

E00
A ¼ hQðE0 −H0ÞQi þ 2hHAihQi − hfHA;Qgi: ð15Þ

E0
A is finite in the limit ϵ → 0, and

H0
AjΦi ¼

�
−
1

2
ðE0 − VÞ2 − pi

1

1

2r

�
δij þ rirj

r2

�
pj
2

þ 1

4
~∇2
1
~∇2
2 þ

1

2
ðE − VÞðV1 þ V2Þ

þ 1

4
~∇1ðV1 þ V2Þ ~∇1 þ

1

4
~∇2ðV1 þ V2Þ ~∇2

	
jΦi;

ð16Þ

where the action of ~∇2
1
~∇2
2 on Φ in the above is understood

as a differentiation with omission of δ3ðrÞ, and Vi is defined
in the caption of Table I.
The expression for Eð6Þ, after subtraction and elimination

of all singularities, is the main result of this work and has
the following form:

Eð6Þ ¼ E0
Q þE0

H þE0
A þEC þER1 þER2 − lnðαÞπhδ3ðrÞi;

ð17Þ

where E0
H is the expectation value of HH with dropping the

1=ϵ and lnm terms, E0
A is defined in Eq. (14), EC in Eq. (5),

ER1 and ER2 are mean values of the Hamiltonians (9) and
(10), correspondingly. The logarithmic term in Eq. (17)
agrees with that obtained for helium in Ref. [18]. The sum
of the “soft” photon exchange contributions E0

Q ¼ hHQi þ
E00
A for the case of H2 after ð1 ↔ 2Þ simplification becomes

E0
Q ¼ −

E3
R

2
þ R

dER

dR

�
Eð4Þ

2
−
E2
R

4

�
−
ER

4
Q1 þ

1

8
Q2 −

1

4
Q3 −

1

2
Q4 þ

3

8
Q5 −

1

4
Q6 þ

1

24
Q7 þ

2Eð4Þ þ E2
R

4
Q8

−
ER

2
Q9 þ

1

4
Q10 þ

ER

2
Q11 þ ERQ12 − ERQ13 −Q14 þQ15 −

1

2
Q16 −

1

2
Q17 þ

1

16
Q18 þ

1

2
Q19 −

1

8
Q20

þ 1

4
Q21 þ

1

4
Q22 þQ23 þ

1

2
Q24 −

1

32
Q25 −

1

4
Q26 −

ER

8
Q27 −

1

2
Q28 þ

1

4
Q29 þ

1

8
Q30; ð18Þ

where R ¼ rAB, ER ¼ E0 − 1=R and Qi are defined
in Table I. These operators agree with those obtained
previously for helium in the R → 0 limit, as they
should.

Gaussian integrals.—Almost all the calculations of
matrix elements with α6m operators are performed in this
work by using the explicitly correlated Gaussian (ECG)
functions
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ϕΣþ ¼
�
1þ r12

2

�
e−a1Ar

2
1A−a1Br

2
1B−a2Ar

2
2A−a2Br

2
2B−a12r

2
12 : ð19Þ

In order to satisfy the electron-electron cusp condition, we
include an explicit factor ð1þ r12=2Þ in the wave function.
It not only improves the numerical convergence, but also it
is crucial for obtaining a correct numerical value for some
of the nearly singular matrix elements, especially E0

A,
otherwise the result would be incorrect. The other second-
order matrix element EC does not have any singularities, so
the ð1þ r12=2Þ factor can be dropped. It involves inter-
mediate states of Σ− and Π symmetries, which have the

following representations: ϕΣ− ¼ ~R · ð~r1A × ~r2AÞϕΣþ and
~ϕΠ ¼ ð~R × ~r1AÞϕΣþ .
The primary advantage of ECG functions is that all

integrals with operators in Table I, as well as in the
second-order elements, can be performed either analytically
or numerically as follows. All the matrix elements are
expressed as a linear combination of the following integrals:

fðn1; n2; n3; n4; n5Þ ¼
1

π3

Z
d3r1

Z
d3r2r

n1
1Ar

n2
1Br

n3
2Ar

n4
2Br

n5
12

× e−c1Ar
2
1A−c1Br

2
1B−c2Ar

2
2A−c2Br

2
2B−c12r

2
12 :

ð20Þ

TheECG integralswith even powers of interparticle distance
canbegeneratedbydifferentiationovernonlinearparameters
of the master integral

fð0; 0; 0; 0; 0Þ ¼ X−3=2e−R
2Y
X; ð21Þ

where

X ¼ ðc1A þ c1B þ c12Þðc2A þ c2B þ c12Þ − c212; ð22Þ

Y ¼ ðc1B þ c1AÞc2Ac2B þ c1Ac1Bðc2A þ c2BÞ
þ c12ðc1A þ c2AÞðc1B þ c2BÞ: ð23Þ

If one of the nk indices is odd, the ECG integrals can also
be obtained analytically by differentiation of other master
integrals. An exemplary master integral for the case of
n1 ¼ −1 reads

fð−1; 0; 0; 0; 0Þ ¼ 1

X
ffiffiffiffiffiffi
X1

p e−R
2Y
XF

�
R2

�
Y1

X1

−
Y
X

��
; ð24Þ

where X1 ¼ ∂c1AX, Y1 ¼ ∂c1AY, and FðxÞ ¼ erfðxÞ=x.
Molecular ECG integrals, as opposed to the atomic case,
havenoknownanalytic formwhen twoormorenk areodd. In
this case, we use numerical integration with the quadrature
adapted to the end-point logarithmic singularity [19]. This
approach appears to bevery efficient for all the integralswith

two and three odd indices, which are required in the
evaluation of matrix elements of all the α6m operators.
Numerical calculations.—The nonrelativistic wave func-

tion Φ used for the ground electronic state is the sym-
metrized (1 ↔ 2, A ↔ B) linear combination of N ¼ 128,
256, or 512 basis functions ϕΣþ from Eq. (19). All
individual nonlinear parameters are carefully optimized,
and the precision achieved for the ground state energy is
about 10−11 with N ¼ 512 basis. The separate optimization
with the same basis size N was performed to accurately
represent the resolvent of Π and Σ− symmetry in the
second-order matrix elements EC. Moreover, for E0

A we use
an additional nonoptimized constant sector of ϕΣþ basis
functions, where nonlinear parameters come from the Σþ
wave function of the size N=2. This is because the
electronic ground state has to be subtracted from the
resolvent. The global optimization of all nonlinear param-
eters ensures high accuracy for matrix elements.
Nevertheless, in some cases, like for Q10, we transform
matrix elements to a more regular but equivalent form to
further improve the numerical accuracy [20]. Moreover, for
the Q27, Q28, and Q30 operators it was essential to use the
basis functions with 1þ r=2 prefactor, so the wave
function satisfies exactly the electron-electron cusp con-
dition. Particular attention should be paid to the second-
order matrix element E0

A with the regularized Breit-Pauli
Hamiltonian. The use of 1þ r=2 prefactor was necessary to

subtract the δ3ðrÞ term from the ~∇2
1
~∇2
2 differentiation of the

outer wave function, and it also significantly improves the
numerical convergence of E0

A.
All numerical matrix elements have been checked

against the R → 0 and R → ∞ limits. Every operator Qi
in Table I as well as E0

A, EC, and ER2 have a well-defined
limit R → 0 to the corresponding helium ground state mean
value [16]. However, in the particular case of Π contribu-
tion to EC the helium limit is achieved at extremely low
values of R, indicating the significant change in the
character of the electronic wave function at distances
R ¼ 0–0.2 where the ECðΠÞ curve has a local sharp
minimum. The exceptional case is ER1, which does not
go to the helium limit at R ¼ 0. The reason for this is that
Zα expansion of the electron self-energy assumes that all
interparticle distances are of the order of the Bohr radius.
When the internuclear distances are of the order of the
electron Compton wavelength the Zα expansion takes a
different form and the proper helium limit is then achieved.
All the numerical matrix elements have also been

verified against the long-distance asymptotics R → ∞,
which coincide with hydrogenic values as they should. It
was essential to perform all possible tests, in order to avoid
mistakes in derivation and coding of matrix elements.
Moreover, matrix elements of Q1…Q7 have also been
calculated with the double James-Coolidge basis [21]
because the achieved numerical accuracy with exponential
functions is much higher than with Gaussians. So far, we
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have not been able to calculate all the matrix elements with
explicitly correlated exponential functions because they
involve integrals that are too complicated, but we plan to do
this in the near future.
Results.—The exemplary expectation value at R ¼

1.4 a:u: of all Qi operators is presented in Table I. The
numerical accuracy is about five significant digits, and we
observe a significant cancellation, so the sum, as expressed
by EQ, is smaller than most of the individual terms; see
Table II. The overall dependence of the nonlogarithmic
photon exchange contribution EQ þ EA þ EC þ EH ¼
E0
Q þ E0

A þ EC þ E0
H on the internuclear distance is pre-

sented in Fig. 1. We observe the extremum around 1.5 a.u.,
which is not far from the mean internuclear distance where
the radial wave function is localized, so the photon exchange
contribution to the dissociation energy is relatively small.
Table II supplies all contributions to Eð6Þ as given in

Eq. (17) at R ¼ 1.4 a:u: It is worth noting that the by far

largest contribution comes from the one-loop radiative
correction ER1, which legitimizes the previous estimations
for α6m contribution [13]. Table III presents a summary of
all contributions to the dissociation, fundamental vibra-
tional, and rotational transitions. In particular, this table
contains significantly more accurate results for the α2 m
nonrelativistic energies obtained using explicitly correlated
exponential functions [12].
Summary.—We have calculated the complete α6m con-

tribution to the molecular hydrogen energy levels. This is
the first calculation of the higher order relativistic effects
ever performed for molecules, except for the one-electron
molecular ion Hþ

2 [10]. Besides significant improvements
in the H2 levels, it shows how to properly incorporate
electron correlations with relativistic and QED effects.
The improvement of the H2 levels down to the

10−7 cm−1 level will lead to a more accurate determination
of the R∞ constant and may shed light on the proton charge
radius puzzle. The ratio of the nuclear finite size effects to
the transition energy for 1S − 2S in H is 3.9 × 10−10, while
for the H2 dissociation energy it is 8.6 × 10−10. Since the
ratios are sufficiently different, one can use these transitions

TABLE II. Contributions toEð6Þ for the ground electronic state of
H2 at R ¼ 1.4 a:u: ELG is the logarithmic correction, the last term
in Eq. (17). ED is the α6 m contribution from the Dirac equation.

α6 m H2ðΣþÞ
E0
Q 0.688 40(16)

E0
H −0.043 832

E0
A −0.641 4ð5Þ

EC −0.059 54ð4Þ
Subtotal −0.056 4ð6Þ
ER1 9.254 583
ER2 0.142 233
ELG 0.258 811

Total 9.599 3(6)
−2EDðHÞ 0.125 000
−2ER1ðHÞ −6.123 245
−2ER2ðHÞ −0.109 212
Eð6ÞðH2Þ − 2Eð6ÞðHÞ 3.491 8ð6Þ α6 m

FIG. 1. Nonlogarithmic photon exchange contribution E0
Q þ

E0
A þ EC þ E0

H as a function of the internuclear distance R. The
horizontal line is located at −1=8, which is twice the atomic
hydrogenvalue, and the dashed curve shows the 0.529947904=R2−
1=8 asymptotics, which is obtained from the small R expansion
of the Casimir-Polder potential [22].

TABLE III. Contributions to dissociation, vibrational, and rotational transitions in H2 in cm−1. Physical constants
are from Ref. [2] and rp ¼ 0.8409ð4Þ fm. There are additional 10−3 uncertainties of α4, α5, and α6 m terms due to
the BO approximation, which are included in the final result only. The α7 m term is estimated from the known
leading double logarithmic contribution in Eq. (11) and the related 50% uncertainty is assumed. Er2p is the finite
proton size correction.

D0 v ¼ 0 → 1 J ¼ 0 → 1

α2 m 36 118.797 746 12(5) 4 161.164 070 3(1) 118.485 260 46(3)
α4 m −0.531 8ð3Þa 0.023 41(1)c 0.002 580(1)
α5 m −0.194 8ð2Þb −0.021 29ð2Þc −0.001 022ð1Þ
α6 m −0.002 065ð6Þ −0.000 192 3ð6Þ −0.000 008 9ð1Þ
α7 m 0.000 118(59) 0.000 012 0(60) 0.000 000 6(3)
Er2p −0.000 031 −0.000 003 2 −0.000 000 2
Theory 36 118.069 1(6) 4 161.166 01(4) 118.486 810(4)
[23–25] 36 118.069 62(37) 4 161.166 32(18) 118.486 84(10)

a[26]; b[13]; c[24]
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to determine R∞ and rp without referring to the other, less
well-known transitions in hydrogen. To achieve this,
however, further improvement in the H2 levels is required,
in particular the calculation of the α7m contribution.
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discussions, and for the calculation of 1=R2 asymptotics
and the fit of Eð6ÞðRÞ. This work was supported by the
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Note added in proof.—Our preliminary calculations of the
leading relativistic correction indicate that the related
uncertainty from Refs. [13,26] is underestimated.
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