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The polarization of a material and its response to applied electric and magnetic fields are key solid-state
properties with a long history in insulators, although a satisfactory theory required new concepts such as
Berry-phase gauge fields. In metals, quantities such as static polarization and the magnetoelectric θ term
cease to be well defined. In polar metals, there can be analogous dynamical current responses, which we
study in a common theoretical framework. We find that current responses to dynamical strain in polar
metals depend on both the first and second Chern forms, related to polarization and magnetoelectricity in
insulators as well as the orbital magnetization on the Fermi surface. We provide realistic estimates that
predict that the latter contribution will dominate, and we investigate the feasibility of experimental
detection of this effect.
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Introduction.—The importance of Berry phases and
other geometrical properties of Bloch wave functions
was first clearly understood in topological phases such
as the integer quantum Hall effect [1,2]. It rapidly became
clear that many physical observables in solids are described
by Berry phases even in ordinary insulators with no
quantization; the electrical polarization in a crystal can
be fully and concisely expressed via the Berry connection
of Bloch states [3,4]. Metallic systems present additional
challenges: in the oldest example, the anomalous Hall
effect [5], there are both Berry curvature “intrinsic” con-
tributions and “extrinsic” contributions that depend on the
details of scattering processes. Discrete symmetries under-
lie and restrict the emergence of these responses [6]; the
anomalous Hall effect is enabled by the breaking of time-
reversal symmetry and is observed in magnetic metals.
The goal of this Letter is to analyze a class of transport

effects enabled by the breaking of inversion symmetry in
metals. The study of inversion breaking materials such as
ferroelectric insulators with switchable polarization, has
revealed several fundamental pieces of solid-state physics
and led to a variety of applications [7,8]. These advances
have translated into a recent increasing interest in the more
elusive polar metals [9–11]. While metals do not have a
measurable electrical polarization—any surface charge den-
sity would be screened by the bulk conduction electrons—
polar metals have a low enough symmetry group to support
a static polarization were they insulators. More precisely,
we explain how the Berry curvature and related quantities
such as the orbital magnetic moments [12] result in a
piezoelectric and magnetopiezoelectric (MPE) response to
time-dependent strain in polar metals with or without time-
reversal symmetry. Some of these observables can be viewed

as generalizations to metals of Berry curvature properties
in insulators such as electrical polarization and the orbital
magnetoelectric effect, while others are Fermi Surface (FS)
properties and, hence, specific to metals. The effects we
discuss have important analogues in the corresponding
insulating inversion-broken state, in the same way as the
integer quantum Hall effect is connected to the intrinsic
anomalous Hall effect [13,14]. An additional motivation for
the present Letter is the active theoretical discussion of when
metals, such as Weyl semimetals [15,16], can support a
current that is induced by and is parallel to an applied
magnetic field (the chiral magnetic effect) [17–24]. The
answer is connected to the low-frequency limit of optical
activity and involves the magnetic moment of Bloch elec-
trons at the Fermi level [25,26], which raises the question of
what other properties of metals might involve such magnetic
moments.
The main results of the present Letter are summarized in

equations (12)–(15) and Table I compiles the symmetry
requirements for the effects to emerge. The first is referred
to as piezoelectricity [27–29]; in a polar material, even in a
metal, any time-dependent change of the material, such as a
time-dependent strain,will induce a current resulting from the
changeofpolarization. Inametal,onlychanges inpolarization
are well-defined as these involve measurable bulk currents
through the unit cell. As a difference with the insulating case
where the energy gap protects against processes that do not
excite electrons far from the ground state, we will require a
slow evolution of strain relative to electronic time scales [30].
This assumption guarantees that the distribution function
remains close to equilibrium.Additional effects fromstrongly
nonequilibrium distributions and the scattering processes that
restore equilibrium are left for future work.
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A second effect, which we call magnetopiezoelectricity,
emerges when the material is magnetically ordered and
time-reversal symmetry is broken along with inversion
symmetry. This second order current response is bilinear in
strain rate and static external magnetic field [Fig. 1(a)]. One
contribution can be viewed as the generalization to metals
of the orbital magnetoelectric effect in insulators [32–35].
It involves the second Chern form of the Berry gauge fields
[36–38], a slightly more complicated geometrical object
than the first Chern form that controls the polarization and
Hall effect, and can be interpreted as a metallic version of
the dynamical axion effect in antiferromagnets [39,40].
We also find a second, purely Fermi-surface contribution

to the MPE that is proportional to the orbital magnetic
moment. Our estimates for realistic systems suggest that
this part of the MPE, unique to metals, dominates the
response. Therefore, it is the main prediction of this Letter
for a new experimental effect.
Methodology.—To address the topological responses

of metallic magnetoelectrics, we employ a semiclassical
formalism [12,13,36,41–43]. Our starting point is a
three-dimensional Hamiltonian of a metal Hðk; θÞ that is
parametrized by a time-dependent parameter θðtÞ. The
microscopic origin of θðtÞ can be diverse, it can, for example,
parametrize ferromagnetic [44] or antiferromagnetic order-
ing [45]. Such a fluctuating magnetic order in insulating

systems has been previously studied [46] and termed
“dynamical axion field.”
In this Letter, we focus on the case where θ emerges from

the coupling of homogeneous time-dependent strain to
orbital degrees of freedom, which effectively renormalizes
the hopping structure of HðkÞ in a time-dependent fashion
leading to Hðk; θÞ. The parameter θ can refer to any strain
component, or an arbitrary parametrization of some combi-
nation of strain components. Before proceeding, it is worth
highlighting several relevant aspects of our calculation.
First, strain is nonelectromagnetic and acts as an independent
external field. Second, although we allow for the time-
reversal-breaking magnetic order required for the MPE to
depend on θ, we assume it does not respond to external
magnetic fields at the linear order of interest here. Thus, we
only focus on the orbital contribution. Finally, we assume the
clamped ion limit; strain changes the hopping amplitudes for
the electrons, but the atomic coordinates remain fixed.
A compact way of dealing with Hðk; θÞ is to regard θ as

an extra momentum coordinate. The semiclassical equa-
tions governing the dynamics in this case are given by

_ri ¼ 1

ℏ
∂ ~Ek;θ

∂ki − ð ~Ω × _kÞi − ~Ωiθ _θ; ð1Þ

ℏ_ki ¼ −eEi − eðB × _rÞi; ð2Þ
in terms of the external magnetic (B) and electric (E) fields,
the i ¼ x, y, z component of the three-dimensional position
(r) and momentum (k). The Berry curvature components ~Ω
and ~Ωiθ, to be defined precisely below, determine the Hall
conductivity [3] and the piezoelectric effect [29], respec-
tively. For what follows, we find it convenient to promote
the semiclassical picture to a four-dimensional space
defined by an extended momentum and position vector
[see Fig. 1(b)], kμ ¼ ðk; θÞ and rμ ¼ ðr; rθÞ, respectively,
with μ ¼ x, y, z, θ [47]. The semiclassical equations for
such a phase space read [12,48]

_rμ ¼ 1

ℏ
∂ ~Ek;θ

∂kμ − ~Ωμν _kν; ð3Þ

ℏ_kμ ¼ −eEμ − eBμν _rν: ð4Þ
Here, Eμ and the antisymmetric tensor Bμν are the generali-
zation of the electric ðEiÞ and magnetic (Bi ¼ 1

2
ϵijkBjk)

fields where by construction Bμθ ¼ 0 that implies, from (4),

that ℏ_θ ¼ −eEθ. We note that Eq. (3) includes two correc-
tions due to the external fields [12,49]. One modifies the
band structure εk;θ → ~Ek;θ ¼ εk;θ −mk;θ ·Bwheremk;θ ¼
ðe=2ℏÞImh∂kuk;θj × ðH − εk;θÞj∂kuk;θi is the magnetic
orbital moment defined through the Bloch wave functions
juk;θi. Second, the unperturbed Berry curvature Ωμγ ¼
∂kμakγ − ∂kγakμ where akμ ¼ ihuk;θj∂kμ juk;θi is corrected

asΩμγ → ~Ωμγ ¼ Ωμγ þΩμγ
1 ( ~Ωi ¼ 1

2
ϵijk ~Ωjk). The additional

FIG. 1. (a) Schematic experimental setup. The sample is placed
in a static magnetic field and homogenous time-dependent strain
is applied. The top and bottom surfaces are contacted, short-
circuited through a low impedance ammeter and the current
parallel to the applied field is measured. (b) Illustration of the four
dimensional momentum space. The time-dependent parameter θ
spans an orthogonal direction to the three dimensional Brillouin
zone, projected to two dimensions here. The contributions to the
MPE α1 and α2 come from the interior of the Fermi sea (shaded
red) and the Fermi surface (red contour), respectively.

TABLE I. The dynamical current effects considered in this
Letter and their requirements in terms of inversion ðIÞ and time-
reversal ðT Þ symmetries and the orbital moment m. MPE stands
for magnetopiezoelectricity, i.e., strain-induced currents linear in
applied magnetic field.

I T m Eq.

Piezoelectricity No Any Any (13)
MPE Fermi sea No No Any (14)
MPE Fermi surface No No Nonzero (15)
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Ωμγ
1 ¼ ∂kμa

0
kγ
− ∂kγa

0
kμ
is defined bya0kμ ¼ ihuk;θj∂kμ ju0k;θiþ

c:c: that incorporates the first-order correction to the Bloch
wave function ju0k;θi. The quantity a0kμ is gauge invariant and
physically corresponds to a shift of the wave-packet center
induced by interband mixing from the external fields [49].
Combining (3) and (4) and keeping terms to second

order in the external fields results in [48]

_rμ ¼ 1

ℏ
∂ ~Ek;θ

∂kμ þ e
ℏ
~Ωμν

�
Eν þ

1

ℏ
Bνλ

∂ ~Ek;θ

∂kλ
�

þ e2

ℏ2
~ΩμνBνλ

~Ωλγ

�
Eγ þ

1

ℏ
Bγδ

∂ ~Ek;θ

∂kδ
�
þ…; ð5Þ

which enters the current density

jμ ¼ e
Z
T3

d3k½_rμDk;θ�fð ~Ek;θ; μÞ: ð6Þ

Here, fð ~Ek;θ; μÞ is the Fermi-Dirac distribution for the
perturbed band structure ~Ek;θ at chemical potential μ and
Dk;θ is the modified density of states defined as
Dk;θ ¼ ½1þ 1

2
e
ℏBμν

~Ωμν þOðB2Þ�. Using (5) and (6), the
current density reads

jμ ¼ e
Z
T3

d3k
ð2πÞ3

�
1

ℏ
∂ ~Ek;θ

∂kμ þ e
ℏ
~ΩμνEν

þ e2

ℏ2

�
ΩμνBνγΩγδEδ þ

1

2
ΩδγBδγΩμνEν

�

þ e
ℏ2

�
~ΩμνBνγ

∂ ~Ek;θ

∂kγ þ 1

2
~ΩγνBγν

∂ ~Ek;θ

∂kμ
��

fð ~Ek;θ; μÞ

þ � � � : ð7Þ

We are interested in the spatial components of current
density ji generated when E ¼ 0. Keeping terms poten-
tially linear in B results in [50]

ji ¼ e
Z
T3

d3k
ð2πÞ3

��
1

ℏ
∂ ~E
∂ki þ

_θ ~Ωiθ
�
−
1

8

e
ℏ
ðϵμνγδΩμνΩγδÞ_θBi

þ 1

2

e
ℏ2

�
ϵlmn

~Ωlm ∂ ~E
∂kn

�
Bi

�
fð ~Ek;θ; μÞ þ…; ð8Þ

which is of the form ji ¼ jia þ jib þ jic. The last term, jic can
be proven to be zero [51] which is consistent with the
absence of the chiral magnetic effect in the static limit
[25,26]. In the second term, jib, keeping only linear order
corrections in Bi allows us to evaluate the distribution
function at the unperturbed energy εk;θ leading to

jib ¼ −
1

8

e2

ℏ

Z
T3

d3k
ð2πÞ3 ½ðϵμνγδΩ

μνΩγδÞ_θ�fðεk;θ; μÞBi; ð9Þ

which we note is linear in magnetic field as desired and
explicitly gauge invariant. To simplify jia, we can expand
the Fermi-Dirac distribution around its unperturbed form
fðεk;θ; μÞ

fð ~Ek;θ; μÞ ∼ fðεk;θ; μÞ þ
∂fðEÞ
∂E

����
εk;θ

~E0 þ…; ð10Þ

where ~E0 ¼ −mk;θ · B. We obtain

jia ¼ e
Z
T3

d3k
ð2πÞ3

�
_θΩiθfðεk;θ; μÞ þ _θΩiθ

1 fðεk;θ; μÞ

− _θΩiθ ∂fðEÞ
∂E

����
εk;θ

mk;θ · B

�
; ð11Þ

using that the integral of the Fermivelocity over theFermi sea
vanishes. The correction Ωiθ

1 to the Berry curvature results
from interband mixing and vanishes as 1=Δ3 where Δ is the
separation between different bands [49]. Taking Δ to be
large, the low temperature limit and recasting the last term in
(11) as a Fermi surface contribution, the final response,
which is the central result of this Letter, is given by

ji ¼ βi _θ þ ðα1δij þ αij2 Þ_θBj þOð1=Δ3Þ; ð12Þ

βi ¼ e
Z
occ:

d3k
ð2πÞ3Ω

iθ; ð13Þ

α1 ¼ −
1

8

e2

ℏ

Z
occ:

d3k
ð2πÞ3 ϵμνγδΩ

μνΩγδ; ð14Þ

αij2 ¼ −
e
ℏ

Z
FS

d2k
ð2πÞ3

1

jvkj
Ωiθ

km
j
k;θ; ð15Þ

where ℏjvkj ¼ j∂εk;θ=∂kj.
The first term βi is independent of the magnetic field and

captures the piezoelectric effect [27] when θ corresponds to
strain. For metals, the bulk current arises from the change in
polarization involving occupied states.
The second term, α1, is the analogue of the isotropic

magnetoelectric effect in insulators. Recall that in an insu-
lating system a polarization in response to a static magnetic
field is characterized by the momentum integral of a Chern-
Simons three formdetermined by the band structure [32–35].
In the case of metals, we find that the change in polarization
depends on the variation with respect to θ and is determined
by the integral of the secondChern-form, ϵμνγδTrΩμνΩγδ over
occupied states. It is exactly the derivative of the Chern-
Simons three form with respect to θ.
Two important remarks are in order. First, the semi-

classical approach only incorporates single band effects,
and thus, Ωμν is an Abelian Uð1Þ curvature and we need
not trace over its components. This yields an isotropic
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magnetoelectric effect in our semiclassical treatment, which
neglects terms resulting from cross-gap contributions, which
vanish as 1=Δ [34]. Second, the current generated by finite
deformations is well defined since it is the integral of the
second Chern form. The Chern-Simons three form is only
gauge invariant if integratedover a closedmanifold, so it does
not correspond to a measurable quantity in metals; the static
polarization is ill defined in metals.
Finally, the third term, αij2 , is a novel Fermi surface

contribution that is unique to metals. It is the correction to
the piezoelectric response at linear order in the magnetic
field due to the orbital moment of the Bloch states. In what
follows, we estimate the magnitude of all three terms
contributing to the current to find that the Fermi surface
contribution dominates the response.
Experimental feasibility.—An estimate of the observ-

ability of the current in Eq. (12) relies on the magnitude of
the Berry curvature Ωμν, which is common to all its terms.
We have distinguished two contributions to Ωμν of distinct
physical origin: the purely spatial part Ωij and the mixed
Ωiθ terms. The former defines the Hall conductivity σij ¼
Cije2=h in the (i, j) plane through the Chern number
Cij ¼ ð1=2πÞ R d2kΩij. Since Cij is of the order of unity
[52] or higher [53,54], we expect Ωij ≳ ða2=2πÞ where we
estimate the cross sectional area of the unit cell in the (i, j)
plane using the lattice spacing a. To estimate Ωiθ, we use
previously known facts about the piezoelectric effect.
Identifying θ with a specific strain component ϵjk

(θ ¼ ϵjk), the piezoelectric constant reads [29]

βijk ¼
∂Pi

∂ϵjk ¼ −e
Z
occ:

d3k
ð2πÞ3 Ω

iθ: ð16Þ

This formula only contains the electronic (clamped ion)
contribution to the polarization response, typically smaller
than the dominant contribution from the rearrangement
of the ions. The electronic contribution can, nonetheless,
be accessed independently in ab initio calculations that
estimate βi ∼ 1 C=m2 [55] (suppressing the strain compo-
nent indices for clarity). It follows that Ωiθ ∼ βiða3=eÞ
using the inverse cube of the lattice spacing as an
approximate volume of the Fermi sea.
From the above estimate of the piezoelectric effect, we

can now approximate the magnitude of the remaining terms
in Eq. (12), α1 and αij2 given by Eqs. (14) and (15),
respectively, that are novel to this Letter. The magnitude of
the Fermi sea contribution α1 amounts to

α1 ∼
e
ℏ
a2Cijβ

k; ð17Þ

for a particular set of i ≠ j ≠ k and neglecting the order
one factor arising from the difference between a Fermi
sea integral and a Brillouin zone integral. Inserting

βk∼1C=m2, a ∼ 10−10 m, Cij ¼ 1, we get α1 ∼ 10−5

ðA s=Tm2Þ.
The estimate of the magnitude of the Fermi surface term

α2, unique to metals, requires the magnitude of the orbital
magnetic moment jmj. A conservative estimate results in
jmj ∼ μB ∼ 10−23 J=T where μB is the Bohr magneton, but
it can be as large as jmj ∼ 30 μB [12]. The area of the Fermi
surface can be estimated as 1=a2, the cross section of the
BZ which is the inverse of the cross section of the real space
unit cell. Taking vF ∼ 106 m=s, which is typical for metals
but can be significantly smaller for lightly doped insulators
near the band bottom, and using our above estimate forΩiθ,
we obtain

α2 ∼
βimja
ℏvF

∼ 10−4
A s
Tm2

: ð18Þ

Therefore, we conclude that α2 ≳ α1, and the Fermi surface
contribution specific to metallic systems is dominant.
In addition, it is relevant to emphasize the following

important points regarding experimental detection. First,
strain rates at the order of 10−2 s−1 are achievable in the
elastic regime using ultrasonic techniques [56,57]. For a
sample at the cm scale, with cross sectional area As ∼
10−4 m2 and a magnetic field of 1 T [58], the current signal
is of the order of Ii ¼ Asji ∼ 100 pA. Conventional
ammeters have sensitivity extending to the pA range that
is further improved in superconducting quantum interfer-
ence devices.
Second, the magnetopiezoelectric effect is expected to

coexist with the piezoelectric contribution, so accurate
measurements over a range of magnetic fields are necessary
for its detection. In our estimates, α2 is proportional to and
much smaller than β. However, β gets contributions from
the entire Fermi sea, while α2 only depends on Fermi
surface properties. This allows suppression of β without
changing α2 in appropriately engineered band structures.
Third, the movement of the ions and the polarization of

electrons in thevalence bands induces a bound surface charge
density. Part of the bulk current can be trapped screening it,
possibly preventing its detection in our proposed setup
(Fig. 1), but there is no reason to expect full cancellation.
We note, as well, that pumping dc current is also possible by
out-of-phase modulation of different strain components.
Such a deformation path encircles a finite area in parameter
space; the integral of the current for a pumping cycle is, in
general, a nonvanishing, nonquantized value.
Finally, from the materials perspective, we find that

MnSi satisfies most requirements for these effects to
manifest. It is a magnetically ordered, inversion breaking
metal with complex Berry curvature patterns in the con-
duction bands that is very susceptible to strain [59–62]. The
magnetic order, however, is incommensurate and very
sensitive to external magnetic field. An ideal candidate
material would have a simple easy axis ferromagnetic or
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Néel order that has vanishing susceptibility for magnetic
fields in the ordering direction in the low temperature
limit. The recently studied polar metals [10,11], while
nonmagnetic, would provide a platform for realizing the
field-independent piezoelectric response β. Cold-atomic
systems also offer an alternative; the current is related to an
easily accessible observable, the center-of-mass velocity
vc:m: through vc:m: ¼ j=n where n is the density of the
atomic cloud. Recently, vc:m: has been exploited as a probe
of topological properties [63] and it is, therefore, plausible
that the effects we discuss here can be observed in these
systems as well.
Conclusion.—We have calculated a novel magnetopiezo-

electric response in inversion and time-reversal breaking
metals subjected to static magnetic field and dynamic strain.
Similar to the anomalous Hall effect in metals which can be
viewed as a generalization of the quantized anomalous Hall
effect in insulators, our results for magnetopiezoelectricity
generalize the magnetoelectric response of insulators to
metals. As a key difference, we find an additional Fermi
surface contribution that relies on a finite orbital moment of
the electrons that is unique tometals and likely dominates the
effect in real systems.
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