
Synthesis of Passive Lossless Metasurfaces Using Auxiliary Fields for Reflectionless Beam
Splitting and Perfect Reflection

Ariel Epstein* and George V. Eleftheriades†

The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto,
Ontario M5S 2E4, Canada

(Received 10 June 2016; published 16 December 2016)

We introduce a paradigm for accurate design of metasurfaces for intricate beam manipulation,
implementing functionalities previously considered impossible to achieve with passive lossless elements.
The key concept involves self-generation of auxiliary evanescent fields which facilitate the required local
power conservation, without interfering with the device performance in the far field. We demonstrate our
scheme by presenting exact reactive solutions to the challenging problems of reflectionless beam splitting
and perfect reflection, verified via full wave simulations.
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Thin planar arrangements of polarizable subwavelength
particles (metasurfaces) have been attracting significant
attention lately due to their demonstrated ability to effi-
ciently implement a variety of electromagnetic function-
alities [1–5]. Many innovative low-profile devices
manipulating the phase, magnitude, and polarization of
aperture fields have been reported in recent years [6–17],
pointing out the immense potential of these surfaces in
optics and microwave physics and engineering.
While the first demonstrations used a single layer of

electrically polarizable particles (meta-atoms) [6], it was
soon found that these suffer from a limited transmission
efficiency. To achieve a unity transmission magnitude with
arbitrary transmission phase, both electrically and mag-
netically polarizable meta-atoms must be used [8,9,18].
When illuminated by an incident field, such metasurfaces
induce orthogonal electric and (equivalent) magnetic cur-
rents on the surface, forming Huygens’ sources, capable of
unidirectional radiation [9]. This idea of Huygens’ meta-
surfaces (HMSs) inspired a large number of reports, where
such unit cells were arranged to achieve full transmission
with a given phase profile, yielding a variety of beam
manipulating devices [5].
Nevertheless, it was recently recognized that this

common phase-stipulation design scheme is not accurate
[4,5]. Maxwell’s equations imply that any modification of
the phase profile on an aperture should be accompanied by
a suitable change in the field amplitudes, due to the
inevitable variation of the wave impedance [19]. Thus,
stipulating transmitted fields with uniform (unity) ampli-
tude and arbitrary phase is not valid.
This recognition has dramatic implications. For instance,

when the boundary conditions corresponding to passive
lossless HMSs are rigorously examined, it turns out that
plane-wave refraction cannot in general be realized with
zero reflection, as the metasurface symmetric structure can
only be matched to a single wave impedance value

[7,19,20]. This raised the question, could passive lossless
metasurfaces achieve truly reflectionless engineered
refraction?
A recent paper provided a positive answer to that

question [21]. Relying on generalized scattering matrix
theory, the authors showed that an asymmetric stacking of
three reactance sheets could simultaneously match the
wave impedance of both the incident and refracted plane
waves, leading to zero reflections even in the case of wide-
angle refraction. This approach was generalized in [22],
showing that this structure corresponds to an omega-type
bianisotropic metasurface (O-BMS). In O-BMSs, meta-
atoms exhibit electric and magnetic polarizabilities as in
HMSs but also feature magnetoelectric coupling [2,23].
This additional degree of freedom allows passive lossless
implementation of metasurfaces which are matched to
different wave impedances on their top and bottom facets
[24].
The wave impedance perspective, thus, can be used to

find a realizable solution for transforming a given incident
plane wave to a desirable transmitted plane wave. But what
happens when more than one mode exists below or above
the metasurface? When the incident plane wave is to be
split into two transmitted beams, or reflected in a different
direction, the interference between the modes does not
allow a proper definition of two distinctive network ports
for the top and bottom metasurface facets; this prevents
utilization of microwave network theory as in [21]. In fact,
these fundamental diffraction engineering problems have
very recently been examined by several authors, which
either concluded that inclusion of lossy or active meta-
atoms is required for the implementation, or suggested an
approximate approach which does not form a valid solution
to Maxwell’s equations [4,25,26]. In [26], the authors
described some general ideas for potential lossless solu-
tions; nonetheless, it was implied therein that these would
require exotic elements, exhibiting nonreciprocity or

PRL 117, 256103 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

16 DECEMBER 2016

0031-9007=16=117(25)=256103(6) 256103-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.117.256103
http://dx.doi.org/10.1103/PhysRevLett.117.256103
http://dx.doi.org/10.1103/PhysRevLett.117.256103
http://dx.doi.org/10.1103/PhysRevLett.117.256103


nonlocality, whose passive implementation prospects are
unclear. To the best of our knowledge, whether or not an
accurate design of passive lossless metasurfaces for such
applications is possible remains an open question.
In this Letter, we propose a different paradigm to tackle

these problems. The solution relies on the theorem proved
in [22], indicating that any field transformation that locally
conserves the real power can be implemented by passive
lossless O-BMSs. Designing a reflectionless refracting
metasurface thus becomes trivial, as both the incident
and transmitted plane waves feature uniform power pro-
files, easily matched by proper stipulation of the field
amplitudes [21,22] (this result was independently derived
in [26]). On the other hand, trying to apply this theorem
naively for the cases of beam splitting or engineered
reflection will fail, as the incident and diffracted fields
form nontrivial spatially varying power profiles, which do
not match, in general.
Hence, the key concept underlying our solution is the use

of auxiliary fields to achieve local power conservation. This
approach dictates a judicious stipulation of evanescent field
components, additional to the prescribed excitation and
desirable scattered fields, such that the interference
between all modes guarantees the continuity of the real
power at each point on the metasurface plane, without
affecting the overall device functionality in the far field.
The electromagnetic fields analytically stipulated by this
scheme form an exact solution to Maxwell’s equations,
supported by a suitable passive and lossless O-BMS design.
To demonstrate the versatility of our concept, we present

solutions to these two basic diffraction engineering prob-
lems (beam splitting and perfect reflection), featuring
qualitatively different power profiles, verified via a com-
mercially available finite-element solver (ANSYS HFSS)
[21,22]. The simulated meta-atom structures correspond to
typical printed-circuit-board-compatible metasurface
designs [3,27], as detailed in [28]. It should be stressed
that the physical rationale explored herein is general, and
can be applied to a wide range of metasurface problems.
The applications addressed in the paper were chosen to
emphasize the conceptual leap required to implement
challenging functionalities via passive lossless metasurfa-
ces, deliberately introducing auxiliary fields to facilitate the
solution.
For simplicity, we consider a two-dimensional configu-

ration (∂=∂x ¼ 0) with transverse electric (TE) fields
(Ez ¼ Ey ¼ Hx ¼ 0), where an O-BMS occupies the plane
z ¼ 0, surrounded by homogeneous medium with permit-
tivity ϵ and permeability μ [Figs. 1(a) and 2(a)]. The
O-BMS is characterized by its electric surface impedance
ZseðyÞ, magnetic surface admittance YsmðyÞ, and magneto-
electric coupling coefficient KemðyÞ. The wave impedance
is η ¼ ffiffiffiffiffiffiffiffi

μ=ϵ
p

, the wave number is k ¼ ω
ffiffiffiffiffi
μϵ

p
, and the time-

harmonic dependency is ejωt. The fields below (z < 0)
and above (z > 0) the metasurface are denoted as

fE<
x ðy; zÞ; H<

y ðy; zÞ; H<
z ðy; zÞg and fE>

x ðy; zÞ; H>
y ðy; zÞ;

H>
z ðy; zÞg, respectively.
The relation between the tangential fields on the bottom

(z → 0−) and top (z → 0þ) facets of the metasurface
is given by the O-BMS sheet transition conditions
(O-BSTCs) [22,23]

1
2
ðEþ

x þ E−
x Þ ¼ −ZseðHþ

y −H−
y Þ − KemðEþ

x − E−
x Þ;

1
2
ðHþ

y þH−
y Þ ¼ −YsmðEþ

x − E−
x Þ þ KemðHþ

y −H−
y Þ;

ð1Þ

where we define E−
x ðyÞ ¼ E<

x ðy; zÞjz→0− , Eþ
x ðyÞ ¼

E>
x ðy; zÞjz→0þ (and analogously for H�

y ); the y dependency
is omitted for brevity.
As discussed in [22], if the fields just below and above

the metasurface locally conserve the real power PzðyÞ,
namely,

P−
z ðyÞ ¼

1

2
ℜfE−

x H−�
y g ¼ 1

2
ℜfEþ

x Hþ�
y g ¼ Pþ

z ðyÞ; ð2Þ

for each y on the metasurface, then there exists a passive
lossless solution (ℜfZseg ¼ ℜfYsmg ¼ ℑfKemg ¼ 0 [23])
to the O-BSTCs, given by

Kem ¼ 1

2

ℜfEþ
x H−�

y − E−
x Hþ�

y g
ℜfðEþ

x − E−
x ÞðHþ

y −H−
y Þ�g

;

Ysm ¼ −j
�
1

2
ℑ

�
Hþ

y þH−
y

Eþ
x − E−

x

�
− Kemℑ

�
Hþ

y −H−
y

Eþ
x − E−

x

��
;

Zse ¼ −j
�
1

2
ℑ

�
Eþ
x þ E−

x

Hþ
y −H−

y

�
þ Kemℑ

�
Eþ
x − E−

x

Hþ
y −H−

y

��
: ð3Þ

Our first goal is to harness this theorem to design a
passive lossless O-BMS that splits a normally incident
plane wave to two equal-power plane waves propagating
towards θ ¼ �θout [Fig. 1(a)]. According to the derivation
in Eqs. (1)–(3), to achieve this goal we need to stipulate
the fields below and above the metasurface such that
(i) they obey Maxwell’s equations in the respective regions,
(ii) they satisfy local power conservation [Eq. (2)], and
(iii) they coincide with the given incident and desirable
transmitted fields in the far-field region.
To understand the challenge underlying these require-

ments, we examine the power profiles on the two facets of
the metasurface. The desirable fields above the metasurface
are a superposition of two plane waves with equal ampli-
tudes Eout, namely,

E>
x ðy; zÞ ¼ Eoute−jkz cos θoutðe−jky sin θout þ ejky sin θoutÞ;

H>
y ðy; zÞ ¼

Eout

Zout
e−jkz cos θoutðe−jky sin θout þ ejky sin θoutÞ; ð4Þ

where Zout ¼ η= cos θout is the TE wave impedance. The
real power profile just above the metasurface (z → 0þ) is
thus given by
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Pþ
z ðyÞ ¼ 4

jEoutj2
Zout

cos2ðky sin θoutÞ; ð5Þ

spatially varying following a squared cosine. On the other
hand, a simple plane wave normally incident upon the
metasurface from below would form a uniform power
profile on the bottom facet (z → 0−).
Therefore, to match the power profiles on the two facets

of the metasurface, auxiliary fields are required. The idea is
to introduce suitable evanescent modes to the region below
the metasurface such that their interference with the
incident field would redistribute the (otherwise uniform)
real power on the bottom facet P−

z ðyÞ, leading to the
desirable squared-cosine modulation matching Pþ

z ðyÞ.
Being evanescent, these auxiliary fields would not affect
the performance in the far field, as required.
One possible choice is to add surface waves propagating

at opposite directions (towards y → �∞) on the bottom
facet. With this choice, the fields below the metasurface
would be

E<
x ðy;zÞ¼Eine−jkzþEsweαswzðe−2jkysinθoutþe2jkysinθoutÞ;

H<
y ðy;zÞ¼

Ein

Zin
e−jkzþj

αswEsw

kη
eαswzðe−2jkysinθoutþe2jkysinθoutÞ;

ð6Þ

where Ein is the (given) amplitude of the incident field,
Zin ¼ η= cos θin is the wave impedance (θin ¼ 0), Esw is
the amplitude of the surface waves, and αsw ¼
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4sin2θout − 1

p
∈ R is their decay constant (imply-

ing θout > 30°).
Assuming the field amplitudes are related via

Esw ¼ aEin, a ∈ R, the real power on the bottom facet
of the metasurface (z → 0−) will be given by

P−
z ðyÞ ¼

jEinj2
Zin

½1þ 2a cos ð2ky sin θoutÞ�: ð7Þ

Comparing Eq. (5) with Eq. (7) indicates that local power
conservation Eq. (2) may be achieved if we choose

Eout ¼ 1ffiffi
2

p Eine−jξout
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zout=Zin

p
and a ¼ 1

2
, where ξout is a

possible phase shift.
This step finalizes the design procedure. Fixing the

amplitudes as prescribed allows evaluation of the fields
everywhere in space via Eq. (6) and Eq. (4), and in
particular on the metasurface facets (z → 0�). As these
fields satisfy Maxwell’s equations and local power con-
servation, we may substitute them into Eq. (3) to assess the
(passive lossless) O-BMS specifications that implement the
required field transformation.
To verify our theory, we follow the outlined procedure

and design an O-BMS that couples a normally incident
plane wave to two equal-power plane waves propagating
towards θ ¼ �θout ¼ �71.81°, incurring a phase shift of
ξout ¼ 145°. The design is implemented in ANSYS HFSS
following [21,22], based on three cascaded reactive sheets;
the unit cell size is Δy ¼ λ=9.5 [28].
One period of the metasurface Λ ¼ λ= sin θout ¼ 10Δy

was simulated with periodic boundary conditions, indicat-
ing that 49.5% of the incident power is coupled to each of
the transmitted plane waves, while only 1% is specularly
reflected. The analytically predicted field distributions
[Fig. 1(b)] agree very well with the simulated ones
[Fig. 1(c)], verifying that the normally incident wave front
is transformed to two beams propagating towards �71.81°,
yielding a typical interference pattern above the metasur-
face. The field distribution clearly shows the auxiliary
surface waves formed at z → 0−, as stipulated in Eq. (6).
The role of the auxiliary fields is further highlighted in

Figs. 1(d) and 1(e), where the real part of the z-directed
Poynting vector Pzðy; zÞ is depicted. The normally incident
plane wave carries uniform power in the far field, but as the
interference with the auxiliary surface wave becomes more
significant near the O-BMS, the power is redistributed to
match the power profile of the splitted beam above the
aperture. This is emphasized by the gray lines following
the power flow, indicating the diversion of power towards
the peaks (red) and away from the valleys (blue) of the
sqaured cosine of Eq. (5). We stress that the fields
stipulated in Eqs. (4) and (5) form an exact solution to

FIG. 1. O-BMS for reflectionless wide-angle beam splitting. (a) Physical configuration. (b) Analytically predicted [Eqs. (4) and (6)]
and (c) simulated electric field distribution jℜfExðy; zÞgj. (d) Analytically predicted and (e) simulated z-directed real power
Pzðy; zÞ ¼ 1

2
ℜfExH�

yg; gray streamlines indicate flow of real power from bottom to top.
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Maxwell’s equations with the relevant boundary condi-
tions, such that the passive lossless O-BMS design is
strictly accurate.
The second functionality we consider is “perfect”

engineered reflection [26]. In this case, we desire to fully
couple a plane wave with an angle of incidence θin to a
plane wave reflected towards θout [Fig. 2(a)]. The fields
below the metasurface can be thus written as

E<
x ðy; zÞ ¼ Eine−jkz cos θine−jky sin θin

− Eoutejkz cos θoute−jky sin θout ;

H<
y ðy; zÞ ¼

Ein

Zin
e−jkz cos θine−jky sin θin

þ Eout

Zout
ejkz cos θoute−jky sin θout ; ð8Þ

where Ein and Eout are the amplitudes of the incident and
reflected plane waves, respectively. To guarantee global
power conservation (integrated over the aperture), we set
Eout ¼ Eine−jξout

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zout=Zin

p
, where ξout is a possible phase

shift. Hence, the real power on the bottom facet of the
metasurface is

P−
z ðyÞ ¼

jEinj2
2Zin

� ffiffiffiffiffiffiffiffi
Zin

Zout

s
−

ffiffiffiffiffiffiffiffi
Zout

Zin

s �
cos ðkyΔsin þ ξoutÞ; ð9Þ

where Δsin ¼ sin θout − sin θin.
This power profile is even more intricate than the one

examined before [Eq. (5)], as it changes signs along the
metasurface plane: power is crossing the metasurface from
bottom to top at one half of a period, whereas in the other
half, power is crossing the metasurface from top to bottom.
This means that to support such a field transformation with
a passive lossless O-BMS, it is required to conceive a
mechanism that draws the power from below at one half-
period and pushes it back to the bottom half-space at the
other half-period.
Naively trying to stipulate zero fields on the top facet

would lead, in general, to lossy and active design

requirements [26], as it would violate local power con-
servation. However, using auxiliary evanescent modes
above the metasurface we can match the desirable power
profile of Eq. (9) without affecting the device functionality.
The oscillating power profile is formed by interfering two
surface waves, traveling on the top facet of the metasurface.
As surface waves do not generally carry real power
perpendicular to their propagation direction, we introduce
a π=2 phase shift between them. Correspondingly, the fields
above the O-BMS are defined as

E>
x ðy; zÞ ¼ Esw;1e−α1ze−jkt;1y þ jEsw;2e−α2ze−jkt;2y;

H>
y ðy; zÞ ¼ −j

α1Esw;1

kη
e−α1ze−jkt;1y þ α2Esw;2

kη
e−α2ze−jkt;2y;

ð10Þ

where Esw;n, jkt;nj > k, and αn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2t;n − k2

q
> 0 are the

amplitude, transverse wave number, and decay coefficient
of the nth surface wave, respectively. We define Esw;2 ¼
be−jξoutEsw;1 (b ∈ R), yielding the following power profile
on the top facet

Pþ
z ðyÞ ¼

bjEsw;1j2
2η

α2 − α1
k

cos ½ðkt;2 − kt;1Þyþ ξout�: ð11Þ

Comparing Eq. (11) with Eq. (9) reveals that local power
conservation may be achieved by setting kt;2 ¼ kt;1 þ kΔsin

and b ¼ ðkηjEinj2Þ=½ðα2 − α1ÞZinjEsw;1j2�½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðZin=ZoutÞ

p
−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðZout=ZinÞ

p �; kt;1 and Esw;1 can be chosen at will, as long
as jkt;nj > k.
As for the beam-splitter application, once we achieve

local power conservation the design procedure is com-
pleted. The stipulated fields in Eqs. (8) and (10) can be
evaluated at z → 0� and substituted into Eq. (3) to yield the
O-BMS specifications.
To verify this scheme, we follow the procedure outlined

in Eqs. (8)–(11) to design a perfect reflector which fully
couples a plane wave incident from θin ¼ 0 to a plane wave

FIG. 2. O-BMS for perfect reflection. (a) Physical configuration. (b) Analytically predicted [Eqs. (8) and (10)] and (c) simulated
electric field distribution jℜfExðy; zÞgj. (d) Analytically predicted and (e) simulated z-directed real power Pzðy; zÞ ¼ 1

2
ℜfExH�

yg; gray
streamlines indicate flow of real power from left to right.
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reflected towards θout ¼ 71.81°, imposing a phase shift of
ξout ¼ 90°; for simplicity, we choose kt;1 ¼ 2k,
Esw;1 ¼ Ein. One period of the O-BMS Λ ¼ λ=Δsin ¼
10Δy is once more implemented in ANSYS HFSS using
cascaded reactive sheets [21,22,28].
Good agreement is found between the analytically

predicted and simulated fields [Figs. 2(b) and 2(c)],
implying that 98.5% of the power is successfully coupled
from the incident mode to the reflected one. The interfer-
ence patterns of the incident and reflected fields below and
the surface waves above the O-BMS are clearly observed.
Figures 2(d) and 2(e) show that the auxiliary fields
guarantee the continuity of Pz on the metasurface plane,
shifting power upwards (red) and downwards (blue) alter-
nately. The gray power-flow streamlines demonstrate that,
indeed, the interference between the auxiliary surface
waves forms the mechanism by which power can circulate
between the bottom and top facets, establishing local power
conservation.
To conclude, we have presented a paradigm for synthesis

of O-BMSs for prescribed beam manipulation, without
requiring active or lossy components, and without any
compromise on device performance. Our approach makes
use of auxiliary fields to facilitate the local power con-
servation required for achieving reactive designs; being
evanescent, these fields do not interfere with the device
functionality in the far field. We have demonstrated this
concept by designing O-BMSs for reflectionless beam
splitting and perfect reflection, functionalities that were
considered impossible to implement accurately with pas-
sive lossless metasurfaces.
It is worth noting that although auxiliary fields were

utilized in the past to establish realizable metasurface
constituents, they were mainly used to satisfymathematical
conditions related to holography or Floquet-Bloch (FB)
theory [11,20]. Contrarily, the auxiliary fields introduced
herein serve a very clear physical purpose: they manipulate
the flow of real power by harnessing precise interference
effects. Furthermore, they are not bound to any specific
form. While the fields stipulated to solve the beam-splitting
problem are consistent with the general FB intuition,
coinciding with the second-order FB modes, this is not
the case for the perfect reflection O-BMS. Although the
latter is also periodic, the auxiliary surface waves are not
FB modes of the incident field. This observation empha-
sizes the dramatic conceptual difference with respect to
previous reports, highlighting the extensive freedom
designers have in stipulating auxiliary fields—even beyond
the standard FB scheme [28].
Because of this vast freedom, it is difficult to estimate the

limitations of the presented approach. The necessity to
satisfy the local power conservation condition clearly poses
some constraints on the achievable transformations.
Nevertheless, as this rule applies to the power profile
rather than the fields, and, as demonstrated, the former

can be extensively manipulated by introducing auxiliary
fields, the range of applications could be far broader than
a priori expected. Thus, this range should be assessed by
continuous exploration of the concept for a variety of
applications.
It should be stressed that the fields analytically stipulated

using this approach are exact solutions to Maxwell’s
equations with the O-BSTCs, and no approximation is
used in the process. Importantly, no external sources are
required to excite the auxiliary fields: they are self-
consistently generated by the currents induced on the
metasurface due to the incident fields [28]. Albeit what
might be inferred from [26], the designs are composed of
standard, local, reciprocal, passive, and lossless meta-atoms
[3,27]. Integrating this unorthodox approach into metasur-
face synthesis would allow accurate reactive solutions for
many other challenging applications.
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