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We analyze the recently measured anomalous transport properties of an ultracold gas through a ballistic
constriction [S. Krinner et al., Proc. Natl. Acad. Sci. U.S.A. 113, 8144 (2016)]. The quantized conductance
observed at weak interactions increases severalfold as the gas is made strongly interacting, which cannot be
explained by the Landauer theory of single-channel transport. We show that this phenomenon is due to the
multichannel Andreev reflections at the edges of the constriction, where the interaction and confinement
result in a superconducting state. Andreev processes convert atoms of otherwise reflecting channels into the
condensate propagating through the constriction, leading to a significant excess conductance. Furthermore,
we find the spin conductance being suppressed by superconductivity; the agreement with experiment
provides an additional support for our model.
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Transport measurements through one-dimensional bal-
listic channels provide invaluable insight into the complex
many-body systems by connecting microscopic quantum
dynamics with macroscopic observables, such as the
conductance Gn, spin conductance Gs and heat transport.
In the normal state, these quantities exhibit plateaus as a
function of the gate potential at integer multiples of the
conductance and heat conductance quantum, respectively
[1–3]. If the channel or leads are made superconducting, a
wealth of other phenomena opens up. At a normal-super-
conducting interface, a fermion incident from the normal
metal to the superconductor forms a Cooper pair with
another fermion so that they can enter the condensate, while
a hole gets reflected from the interface—a process called
Andreev reflection (AR) [4–7]. AR lies at the heart of
several interesting transport phenomena, including
Andreev bound states [6], Shiba states [8], manifestation
of the charge parity effect in superconducting grains
[9–11], quantum Andreev oscillations [12], superconduct-
ing spintronics [13], Cooper pair splitting [14], as well as
the celebrated Majorana states of topological superconduc-
tors [15–19]. Despite the abundance of exotic transport
phenomena in electronic condensed matter systems, it has
been only very recently that the conductance properties of
charge neutral massive particles have been measured, using
an ultracold Fermi gas of 6Li atoms, flowing through an
optically created one-dimensional constriction, realizing
the limiting case of a ballistic wire of a single transmitting
transverse channel [20–22], see Fig. 1. This system offers
tunability of the geometry and interactions, with the
opportunity to reach the strongly interacting regime,
where the wire becomes superconducting, contacted by
normal leads in the experiment of Ref. [22]. In condensed
matter environments, similar systems of inhomogenous

superconductivity have attracted significant attention, pro-
viding access to phenomena on the verge between micro-
scopic and mesoscopic physics, such as phase slips [23],
nonlocal quantum correlations [24], and spatially resolved
AR [25]. Superconducting islands immersed in a metallic
environment may also comprise a platform for the study of
the superconductor-metal transition [26–32].
In the presence of weak interactions, the constriction

exhibits conductance plateaus of integer multiples of the

FIG. 1. (a) Geometry of the ultracold gas. The center of a trap is
optically confined into a one-dimensional constriction, sur-
rounded by a two-dimensional region, connected to three-dimen-
sional reservoirs. (b) SC pairing is possible between channels of
arbitrarily high transverse modes due to their nonzero coupling to
the condensate. (c) Transport through the one-dimensional
constriction at weak interactions: only the lowest channel is
transmitting, providing 1=h particle and spin conductances.
(d) Pairing at strong interactions lead to Andreev processes at
the SC-normal interface in higher channels as well, contributing
significantly to the particle conductance.
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G0 ¼ 1=h conductance quantum as a function of the
confinement strength, in accordance with several similar
experiments in ballistic nanostructures [1,2,20,33]. Rather
surprisingly, however, making the gas strongly interacting
leads to larger than fourfold increase in the particle
conductance of the lowest plateau of a single transverse
mode. This is in apparent contradiction with the Blonder-
Tinkham-Klapwijk (BTK) model of transport through a
single ballistic channel [33,34]: although interactions
can make the channel superconducting (SC), this can at
most lead to a factor of 2 increase in the particle
conductance, since in AR, each incident atom can drag
along at most another atom through the constriction, as a
Cooper pair.
We resolve this puzzle by associating anomalous

conductances with multichannel AR processes at the
normal-superconductor interfaces at the two ends of the
constriction (see Fig. 1). Confinement of the atoms within
the constriction significantly renormalizes their inter-
actions, leading to strong SC pairing [35]. This pairing
field penetrates into the normal leads, with several channels
below the Fermi energy. Atoms in higher transverse modes,
that would otherwise be reflected by the constriction, can
go through AR processes within this thin superconducting
interface. As they become part of the condensate they
propagate through the junction as Cooper pairs [6,16]; the
resistance of the channel is thus entirely determined by the
interface [36]. Furthermore, as the interaction increases,
current is increasingly carried by Cooper pairs; therefore,
the spin current approaches zero. This agrees with the
experimental observations of Ref. [22].
The experimental geometry is shown in Fig. 1(a). The

central part of the gas is squeezed into two dimensions
using lithographic imprinting, whereas a narrower
perpendicular laser beam pinches the middle of this region
to form a short one-dimensional ballistic quantum wire
[20–22]. The conductance of the wire is tunable either by
tuning the confinement frequencies νx0; νz0, or using a
gate potential Vg0, created by an additional, wide laser
beam along the z axis (see the caption of Fig. 2). By
creating a density or spin imbalance between the two sides
of the junction, the particle conductance Gn and spin
conductance Gs can be determined by monitoring the
relaxation of the population imbalance in time, and making
use of the equation of states of the gas within the
leads [20,21].
We determine the superconducting profile in the con-

striction within the local density approximation (LDA),
whereby we consider a small part of the system of length
Ly, where the parameters of the gas are assumed to be
constant. We also take into account the renormalization of
interactions due to confinement effects. The constriction is
described by a harmonic Hamiltonian of trapping frequen-
cies ω ¼ ðωx;ωzÞ ¼ ðνx; νzÞ=2π, local gate potential Vg
and chemical potential μ,

Hkin ¼
X
n;σ;q

ξn;σ;qa
†
n;σ;qan;σ;q; ð1Þ

where ξn;q ¼ ðℏ2q2=2mÞ − Vg − μσ þ ðnx þ 1
2
Þℏωx þ

ðnz þ 1
2
Þℏωz denotes the channel energies, and an;q;σ

annihilates an atom in channel n ¼ ðnx; nzÞ, spin
σ ¼ ↑;↓, and momentum q along the y axis. The inter-
action between the 6Li atoms is given by the standard point
interaction gδð3ÞðrÞ, where g is the bare interaction strength
[37]. In order to simplify the treatment of the interaction
term, it is worth going into the center of mass (c.m.) and
relative frame of the colliding atoms along the trapped
directions, ðx1; x2Þ → ½ðx1 þ x2=2Þ; x1 − x2�, and similarly
for z, with the coordinates of the atoms denoted by ðx1; z1Þ
and ðx2; z2Þ. One can thus transform the interaction
Hamiltonian according to the unitary transformation
hN; νjn1;n2i, where N ¼ ðNx; NzÞ and ν ¼ ðνx; νzÞ denote
the c.m. and relative harmonic oscillator quantum states,
and n1, n2 stand for those in the laboratory frame. These
matrix elements are nonzero only for n1 þ n2 ¼ Nþ ν
combinations, due to energy conservation. Since harmonic
trapping and interactions both conserve N and the c.m.
momentum Q, the interaction Hamiltonian can be
decoupled exactly as [38]

Hint ¼
1

~g

X
N;Q

Δ̂†
N;QΔ̂N;Q; ð2Þ

FIG. 2. (a) SC pairing amplitudeΔ0 (lines with symbols) across
the constriction at different interaction strengths shown in the
inset of (b). Solid lines indicate the energies of the transverse
modes of different nz quantum numbers, with only nx ¼ 0, 1, and
2 modes shown. At the edges of the constriction, the gas is quasi-
two-dimensional, and the nx modes are almost completely
degenerate. They split near the middle, where the gas becomes
quasi-one dimensional. (b) Vacuum bound state energies along
the constriction, renormalized by the confinement. [Parameters:
νxðyÞ, νzðyÞ and VgðyÞ are approximated as Gaussians of HWHM
ðdx; dy; dVÞ ¼ ð4.7; 17.7; 15.1Þ μm, as in Ref. [22], and heights
ðνx0;νz0;Vg0Þ ¼ ð23.2 kHz;9.2 kHz;0.625 μK¼ 13.0 kHzÞ. The
chemical potential and temperature are μ ¼ 8.5 kHz and T ¼
62 nK ¼ 1.3 kHz. Cutoff in the channel number: nx; nz ≤ 8. λF
and kF;res denote the Fermi wavelength and wave number within
the reservoirs, respectively.]
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Δ̂N;Q ≡ ~g
X

n1;n2;k

Vn1n2

N a†n1;↓;Q−kan2;↑;k; 6 ð3Þ

where the interaction strength ~g ¼ g=ðlxLylzÞ of energy
dimension is defined using oscillator lengths lxðzÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωxðzÞ

p
. The matrix elements Vn1n2

N ¼ φνxð0Þ×
φνzð0ÞhN; νjn1;n2i, with ν ¼ n1 þ n2 −N, arise from
the matrix elements of the pointlike interaction potential
[38] (see Supplemental Material [39]). In the previous
expression, the value of the relative harmonic oscillator

wave function φν at the origin is given by φνð0Þ ¼
½ð−1Þν=2=ð2πÞ1=4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2νÞð ν

ν=2Þ
q

for ν even and φνð0Þ ¼ 0

for ν odd.
We decouple Eq. (2) in a standard BCS approximation

ΔN ≡ hΔ̂N;Q¼0i. Although in general it could be possible
to have SC ordering in many c.m. modes, we verified that
for the experimental parameters of Ref. [[22]] considered
here, only the N ¼ 0 mode gains nonzero pairing ampli-
tude. Thus, in the following, we focus on this case and
leave the general discussion to the Supplemental Material
[39]. The resulting Bogoliubov-de Gennes Hamiltonian for
quasiparticle excitations reads

HBdG ¼
X
q

ða†↑;q; a↓;−qÞ
� ξ↑;q Δ†

Δ −ξ↓;q

�� a↑;q

a†↓;−q

�
; ð4Þ

in vectorial notation for the band indices. Here, ðaσ;qÞn ¼
an;σ;q denotes the vector of annihilation operators, the SC
matrix is given by Δn1n2

¼ Δ0V
n1n2

0 , and the matrix ξσ;q
contains the band energies on its diagonal. Using a
Bogoliubov transformation, one can now determine the
quasiparticle energies En;q. Then, in order to determine
the pairing amplitude Δ0, one needs to minimize the
finite temperature BCS free energy FMF ¼ EMF −
T
P

n;q log ð1þ e−En;q=TÞ at a fixed chemical potential, as
set by the leads. The mean-field condensation energy
EMF ¼

P
n;qðξn;q − En;qÞ − ðjΔ0j2=~gÞ, however, still con-

tains the bare interaction term ~g, and a divergent sum over
excitation energies. In order to regularize this term, we
make use of the vacuum Bethe-Salpeter equations [57,58],
and express g in terms of physical quantities: the scattering
length a or, equivalently, the vacuum bound state energy EB
(see Supplemental Material [39]),

1

g
¼ m

4πℏ2a
−
Z

d3q
ð2πÞ3

m
ℏ2q2 þ i0þ

¼ 1

lxlz

Z
dq
2π

X
n1n2

jVn1n2

0 j2
EB − ðℏ2q2m þ ℏðn1 þ n2ÞωÞ

: ð5Þ

In contrast to three-dimensional systems, Eq. (5) always
has a vacuum bound state solution EB < 0 in quasi-one-
dimensional gases, even on the attractive side of the
Feshbach resonance [37,59,60]. As we show in Fig. 2(b),

EB strongly depends on the confining frequencies as well as
on the scattering length, and incorporates the confinement-
induced renormalization of the interaction. Making use of
Eq. (5), we can now express the condensation energy in
terms of EB, and, as we show in the Supplemental Material
[39], the resulting expression is regular,

EMF ¼
X
n;q

ðξn;q − En;qÞ

−
X

n1;n2;q

jΔ0j2jVn1n2

0 j2
EB − ðℏ2q2m þ ℏðn1 þ n2ÞωÞ

: ð6Þ

Figure 2(a) shows typical profiles of the SC order
parameter Δ0ðyÞ at various interaction strengths. Because
of the strong confinement towards the middle of the
constriction, the bound state becomes significantly deeper
in energy favoring superconductivity in Eq. (6). Although
in the middle there is only one channel below the Fermi
energy that can contribute to pairing, higher transverse
modes are also coupled to the condensate in the SC-normal
interface through Eq. (4). At the largest interaction
strengths, the SC gap becomes comparable to the Fermi
energy [61]. This strong pairing also extends around the
central potential hill of the constriction, providing a thin
superconducting layer that is responsible for the excess
particle conductance seen in the experiment [22], due to
multichannel Andreev processes. The length scale over
which these processes happen are of the order of the SC
healing length ~ξs. Even though the width of this region is
just a few times the Fermi wavelength λF, the strong pairing
within the constriction leads to ~ξs ∼ λF, and the AR
probabilities become non-negligible.
We determine the particle and spin conductance of the

waveguide in a Landauer picture [33], by calculating the
reflection and AR coefficients ðrppÞn0n and ðrhpÞn0n,
respectively, describing reflections from channel n to n0,
with the p and h indices denoting particle and hole states.
To do this, we determine the eigenmodes of the
Bogoliubov–de Gennes Hamiltonian Eq. (4) at all incom-
ing energies ϵ, (see Supplemental Material [39]). At the
typical temperatures and chemical potential biases of the
experiment, the transport is well described by the zero bias
conductance and spin conductance [33],

Gn=s ¼ −
Z

dϵn0Fðϵ − μÞTrð1 − r†pprpp � r†hprhpÞ; ð7Þ

where 1 denotes the unit matrix, nF stands for the Fermi
function, and the energy arguments of rppðϵÞ and rphðϵÞ are
neglected for brevity. As can be seen from Eq. (7), AR
processes contribute to particle conductance, but they
decrease the spin conductance. The definition of the spin
conductance in Eq. (7) differs from that of Ref. [22] by a
factor of 2, due to the ambiguity in defining the chemical
potential difference in case of the spin current. Using the
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definition above, the spin and particle conductances are
identical in the normal phase, and their deviation indicates
the onset of superconductivity.
As shown in Fig. 3, both Gs and Gn show the usual

Landauer quantization as a function of the gate potential
Vg0 at weak interactions, as has been observed experimen-
tally [20]. At increasing interaction strengths, the con-
striction becomes superconducting, leading to increased
particle conductance and suppressed spin conductance. As
Vg0 is tuned, SC order appears first in the middle of the
constriction (see Fig. 2); thus, only the otherwise trans-
mitting channels can participate in Andreev processes. This
is the regime of the BTK theory, and we observe well-
defined plateaus, within a factor of 2 increase in conduct-
ance. At larger gate potentials, however, the number of
channels in the superconducting interface increases, lead-
ing to a strong increase in conductance. Since the SC layer
at the end of the wire is thin, most channels cannot go
through perfect ARs and they only contribute a small
fraction of a conductance quantum to Gn. The plateaus thus
become less well-defined. Furthermore, in agreement with
experiment [22], we find that Gs depends nonmonotoni-
cally on the gate potential in Fig. 3(b). The reason for this is
that as Vg0 increases, additional channels are pulled down
below the Fermi energy, and the system gains additional
condensation energy by forming Cooper pairs in these
channels. As a result, SC pairing increases, and a larger
fraction of the current is carried by Cooper pairs, leading to
a sudden drop in Gs.
Figure 4 shows Gs and Gn as a function of the horizontal

confinement νx0, exhibiting a broad conductance plateau at
ð1=hÞ conductance at weak interactions. In agreement with
the experiment [22], the conductance plateau is still some-
what visible at larger interaction strengths, but pushed to a
much larger value due to superconductivity (see the curves
1=ðkF;resaÞ ¼ −0.70 and −0.75). However, we also find an
interesting nonmonotonicity of the conductance curves at
strong confinement, that has not been observed experi-
mentally. This behavior is due to the confinement-induced

renormalization of the interaction, that leads to the onset of
SC at tighter confinements. This is accompanied by a
sudden decrease in the spin conductance [see Fig. 4(b)].
This nonmonotonicity does not appear at higher temper-
ature as the confinement-induced onset of pairing is killed
by temperature fluctuations, see the inset of Fig. 4(a). This
effect thus may be observable by further cooling the gas in
the experiment.
The comparison of Fig. 4(a) and the inset also demon-

strates the sensitivity of the conductance curves to exper-
imental parameters, as also seen in Ref. [21]. The
temperature dependence of Gn and Gs is discussed in
the Supplemental Material [39]. Both quantities stay at their
normal state value above the critical temperature of the
constriction, and they change sharply below it. In particu-
lar, Gn can change severalfold within the ∼15% exper-
imental error bars of the temperature and the chemical
potential. The reason is that Δ0 depends very sensitively on
these parameters near the onset of superconductivity, and
its value has a significant influence on transport. Further
important uncertainties arise from experimental aberrations
of the laser fields that form the constriction. Since the
transport is largely governed by an interface effect at the
edge of the constriction, these geometric factors become
important [21].
As an experimental test of our theory, we propose to

investigate the channel’s conductance at large, equal
spin imbalances in both leads, leading to the suppression
of the constriction’s superconductivity due to Fermi surface
mismatch. At large imbalances, the SC-normal transition
could thus be measured using the drop of anomalous
particle conductances, and from the increase of spin
conductance, to their respective values in the normal state
[62–64].

FIG. 3. Particle (a) and spin (b) conductance as a function of the
gate potential at different interaction strengths 1=ðkF;resaÞ in the
reservoirs. [Parameters: T ¼ 62 nK ¼ 1.3 kHz, μ ¼ 8.5 kHz,
ðνx0; νz0Þ ¼ ð9.2; 23.2Þ kHz, the geometry is identical to the
one in Fig. 2.]

FIG. 4. Particle (a) and spin (b) conductance as a function of the
horizontal confinement at different interaction strengths and at a
temperature T ¼ 62 nK. The conductance exhibits nonmono-
tonic behavior due to the onset of SC at large confinement
strengths, an effect that goes away at higher temperatures
T ¼ 109 nK ¼ 2.3 kHz, shown in the inset. [Parameters:
μ ¼ 8.5 kHz, ðVg0; νz0; Þ ¼ ð100 nK; 23.2 kHzÞ, the geometry
is identical to the one in Fig. 2.]
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The above analysis of quantum transport assumes a static
order parameter in the superconducting region. Its finite
size may constrain the fluctuations of the number of atoms
in the region. The constrained particle number fluctuations
enhances the fluctuations of phase of the order parameter.
These effects were studied extensively in the context of
Coulomb blockade in a superconducting island coupled to
a normal-metal lead, see, e.g., Refs. [65] and [66]. The
overall conclusion is that at large conductance of the
interface the effects of Coulomb blockade (i.e., constraints
on the particle number) are negligible. The corresponding
energy scale turns out to scale as exponent of −Gn=G0 if the
large conductance of a junction is achieved by increasing the
number of conducting channels [65,66], and as a product of
reflection amplitudes in each of the channels, in case of an
arbitrary (even small) number of highly-transparent channels
[66,67]. The phase fluctuations are small, and their estimate
in the Gaussian approximation is provided in Section VI of
the Supplemental Material [39].
Conclusion.—We demonstrated that the recently

observed anomalous transport measured in Ref. [22] is
the result of a subtle interface effect at the ends of the
ballistic wire, that becomes superconducting due to con-
finement-induced renormalization of interactions. Since
SC penetrates in the quasi-two-dimensional part of the
lead, channels that would otherwise be reflected by the
constriction can participate in Andreev processes, thus
delivering Cooper pairs to the condensate which propagate
through the interior part of the channel as a spinless
superfluid. We could also explain nonmonotonicities in
the spin-conductance curve as the gate potential was
changed, and predict additional nonmonotonicities of the
conductance as a function of the confinement frequency at
low temperatures.
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