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Dynamics of coupled chaotic oscillators on a network are studied using coupled maps. Within a broad
range of parameter values representing the coupling strength or the degree of elements, the system repeats
formation and split of coherent clusters. The distribution of the cluster size follows a power law with the
exponent α, which changes with the parameter values. The number of positive Lyapunov exponents and
their spectra are scaled anomalously with the power of the system size with the exponent β, which also
changes with the parameters. The scaling relation α ∼ 2ðβ þ 1Þ is uncovered, which is universal
independent of parameters and among random networks.
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After the success of extensive studies on network
structures [1–3], the dynamics on networks has gathered
considerable attention [4]. Apart from simple two-state
dynamics as adopted in neural or gene-regulatory networks
as well as in epidemic propagation, oscillatory dynamics
are extensively investigated. The main focus therein lies in
global synchronization among all oscillators: Depending
on the network structure, synchronizability varies, and
the design of easily synchronized networks has been
analyzed [5,6].
When oscillators are globally synchronized, their

dynamics are reduced into just that of a single oscillator.
If the dynamic elements on the network are responsible for
some function, global synchronization would imply the
loss of the function. In the power grid network, such
synchronization will lead to a global black out [7,8], while
in neural networks, it may lead to the loss of cognitive
function. In contrast, biological systems often avoid such
global synchronization, and involve dynamics with many
degrees, which are often suggested to lie at a critical state,
represented by a power law in activities [9–15]. Hence,
dynamics on the network, which achieves a critical state,
need to be studied.
Indeed, dynamics with many degrees of elements are

much richer, including spatiotemporal intermittency, split
of elements into multiple coherent clusters, chaotic itiner-
ancy that changes effective degrees of synchronization in
time, and collective chaotic dynamics, as have been
extensively studied in coupled map lattices (CMLs)
[16–18] or globally coupled maps (GCMs) [19], where
identical chaotic dynamics interact with each other.
Behaviors discovered in coupled maps have been observed
in fluid, optical, electronic, and chemical systems as well as
in biological and neural dynamics [20], and also in direct
experiments [21].
Further, behaviors of coupled maps neither on a simple

lattice nor with global interactions have also been studied
[22–26]. In particular, coupled maps on networks (CMNs)

should be relevant for exploring the salient behaviors in
high-dimensional dynamics, where conditions for chaotic
synchronization [27,28] and splitting of elements into a few
synchronized clusters, which also depends on network
structures [29–36], have been investigated. Chaotic dynam-
ics between synchronization and desynchronization with a
critical state robust to parameter changes, however, has not
been explored as yet.
In the present Letter, we study a CMN with chaotic

logistic maps. After classifying the dynamics into several
phases, we focus on a phase that we call the chaotic
Griffiths phase, in which elements repeat synchronization
and desynchronization intermittently. In this phase, the size
distribution of synchronized clusters is found to follow a
power law, while the Lyapunov spectra satisfy anomalous
scaling. These “critical” behaviors are maintained over a
broad range in the parameter values. Furthermore, the
critical exponents of the clusters distribution and Lyapunov
spectra change with the parameter values, while maintain-
ing a certain scaling relationship.
To be specific, we study the following coupled map

network,

xnþ1ðiÞ ¼ ð1 − ϵÞf(xnðiÞ)þ
ϵ

ki

XN

j¼1

Ti;jf(xnðjÞ); ð1Þ

with the logistic map fðxÞ ¼ 1 − ax2, and the coupling
strength ϵ, where the adjacency matrix Ti;j represents the
Erdös-Rényi random network, and ki is a degree of the
element i, whose average is set at k. Here, we choose a
sufficiently large value of a (say 1.6 < a < 2), such that
chaotic dynamics exist for the logistic map xnþ1 ¼ fðxnÞ.
As analyzed by linear stability analysis, the whole elements
are synchronized for larger ϵ and k. The dynamics of this
synchronized state are reduced to a single logistic map
xnþ1 ¼ fðxnÞ, and thus exhibit chaotic dynamics. With the
decrease in ϵ or k, the synchronized state loses stability, and
nontrivial dynamics appear. The attractor dynamics are
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roughly classified into the following phases (Figs. 1 and 2),
as are also quantitatively characterized by the Lyapunov
exponents λ1 ≥ λ2 ≥ � � � ≥ λN (see Supplemental Material
[37], Fig. S1). (i) Chaotic synchronization: All elements are
synchronized, and thus, the dynamics are reduced to a
single logistic map. λ1 > 0, and λj < 0 for j > 1.
(ii) Chaotic Griffiths phase (CGP): λj > 0 up to a certain
number Np with 1 ≪ Np ≪ N. As shown in Fig. 1(a),
xnðiÞ’s are almost synchronized for some time and are
desynchronized later. Criticality with power-law statistics is
preserved within the phase, as will be discussed in detail

below. (iii) Ordered phase: After transients, chaos disap-
pears and is replaced by a periodic or quasiperiodic
attractor [see Fig. 1(b)], such that λ1 ≤ 0. The phase
corresponds to the ordered phase in GCM [19] or pattern
selection in CML [17]. Near the boundary to phase (ii), the
chaotic transient before reaching the attractor is quite long.
(iv) Frozen chaos phase with macroscopic order: Dynamics
of each element are desynchronized and chaotic, while
maintaining the period-2 band motion as x > x� ↔ x < x�,
where x� is the unstable fixed point of the map xnþ1 ¼
fðxnÞ [see Fig. 1(c)]. Here, many but not all of the
Lyapunov exponents are positive. The number of positive
Lyapunov exponents Np increases linearly with N; i.e.,
Np ¼ OðNÞ < N. The phase corresponds to the frozen
random pattern in CML. (v) Fully chaotic phase: All the
Lyapunov exponents are positive, i.e., Np ¼ N, and
dynamics are fully chaotic [see Fig. 1(d)]. The phase
corresponds to the turbulent state in CML and GCM.
Hereafter, we focus on phase (ii) (CGP), as it is inherent

to a network system, including both random connection
and global coupling, and no correspondent phase exists in
CML and GCM [with the increase in k, the phase shrinks
and is replaced by the chaotic synchronization phase (see
Supplemental Material [37], Fig. S2)]. First, we analyze the
repetition of the synchronization-desynchronization proc-
ess by defining a cluster with a given precision: By
introducing bins with the precision δ, which is sufficiently
small, we define a cluster as elements xnðiÞ that fall within
the same bin. In Fig. 3, the time series of maximal cluster
size is plotted. As shown, many of the elements are
synchronized from time to time to form a large cluster,
and then they are desynchronized. This represents the
repetition of the synchronization-desynchronization proc-
ess. The behavior is analogous with chaotic itinerancy in
GCM [19,38], but remarkably, this phase exists not only at
a critical point but also in a broad parameter region (see
Fig. 2). To confirm this criticality, we computed the

(a) (b)

(c) (d)

FIG. 1. Examples of typical time series in the CMN (1): x2nðiÞ
as a function of time step n are overlaid for all elements i, after
discarding initial transients of 106 steps. Instead of plotting every
time step, the variables are plotted every two time steps to
make them clearly discernible, since the period-two oscillation is
inherent in the logistic map. a ¼ 1.7 and N ¼ 200. (a) ϵ ¼ 0.5,
k ¼ 20 [phase (ii)]. (b) ϵ ¼ 0.35, k ¼ 15 [phase (iii)]. (c) ϵ ¼ 0.2,
k ¼ 10 [phase (iv)]. (d) ϵ ¼ 0.05, k ¼ 10 [phase (v)].

i
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FIG. 2. Phase diagram of the CMN (1) with a ¼ 1.7 and
N ¼ 200. Each phase (i)–(v) (see text) is determined by the
Lyapunov exponents as described in the text (see Supplemental
Material [37] for the diagrams on λ1, λ2, Np, and an index for
macroscopic order defined therein). The configuration of the
phase diagram is independent of a, while the phase boundary is
shifted.

FIG. 3. Temporal evolution of the maximal cluster size.
a ¼ 1.7, k ¼ 20, and N ¼ 1000. The cluster is computed by
using the threshold δ ¼ 10−3, while this intermittent behavior
does not vary as long as it is sufficiently small. ϵ ¼ 0.5 (blue
line), ϵ ¼ 0.55 (green line), ϵ ¼ 0.6 (red line), in the chaotic
Griffiths phase.
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distributionPðsÞ of cluster sizes s by long-term sampling of
them. As shown in Fig. 4, the distribution obeys a power
law PðsÞ ∼ s−α at this phase, where the exponent α changes
with the parameters ϵ, k, and a. For given a, as ϵ or k is
increased to approach the chaotic synchronization phase
(i), the exponent α approaches 2, while it increases
monotonically to ∼4 as the parameters decrease towards
the boundary value to phase (iii). This suggests that the
criticality is maintained throughout phase (ii), while the
exponent α changes monotonically with the parameters.
(As for the change against k, see Supplemental Material
[37], Fig. S3).
Existence of power-law behavior over a finite range of

parameters is not typically observed in a regular lattice or a
mean-field coupling system. Indeed, in the spatiotemporal
chaos in CML, the correlation decays exponentially in
space [39], while in the turbulent phase in GCM, the
distribution of synchronized cluster decays exponentially
such that a large cluster is not generated [19]. In these cases,
the number of positive Lyapunov exponents Np increases
linearly with the number of elements N, i.e., they are
extensive variables [40–43]. In contrast, in phase (ii) with a
power-law behavior, the number of positive Lyapunov
exponents Np increases with N anomalously, as Nβ [see
Fig. 6(a)]. The exponent is ∼1 at the boundary with phase
(iii), and decreases monotonically as ϵ or k is increased,
until it approaches 0 at the boundary with phase (i).
Furthermore, the Lyapunov exponents λðzÞ plotted as a
function of the scaled variable z ¼ i=Nβ follow a single
curve independent of N for positive exponents, except for
the first few Lyapunov exponents [see Fig. 6(b) and
Supplemental Material [37], Fig. S3]. This anomalous
scaling is in stark contrast with the Lyapunov exponents

in CML and GCM, where only the normal scaling β ¼ 1 is
observed (except at the critical point) [44].
The exponent β < 1 in the CMN implies that the degree

of chaos does not properly increase with the system size,
thus allowing room for generation of a large coherent
cluster intermittently. Then, it is expected that with the
increase from β ¼ 0 to 1, the fraction of a larger cluster
decreases, such that the exponent α is increased. The
relationship between the two exponents is plotted in
Fig. 5, where the data are roughly fitted with α ∼ 2ðβ þ 1Þ.
This critical behavior within a finite parameter range in a

system with quenched randomness is reminiscent of
Griffiths phase, first predicted in the diluted Ising model
[45]. The existence of Griffiths phase in network dynamics
was recently reported [46–48]: Muñoz et al. studied a
quenched contact process to find a power-law relaxation
process within a finite range of remaining rate of edges.
Indeed, in a contact process on a regular lattice, there exists
a percolation threshold beyond which active states persist,
and below which active states disappear, to be replaced by
the absorbing state that is reached within a finite time. For a
quenched disordered system, in contrast, the transition
point is blurred, and the critical behavior is stretched in

FIG. 4. The distribution PðsÞ of cluster size s. Log-log plot.
a ¼ 1.7, k ¼ 20, and N ¼ 16384. The results from ϵ ¼ 0.45,
0.475, 0.5, 0.525, 0.55, 0.575, and 0.6 are plotted with different
colors. The distribution is obtained by sampling over 103 steps,
with 100 initial conditions, over 100 networks, by using the
threshold δ ¼ 10−3, while the exponents do not vary as long as
this threshold is sufficiently small, and also the network sample
dependence is negligible.

FIG. 5. (a) Dependence of the exponent α (red) and β (blue)
upon ϵ, from the data of Figs. 4 and 6. (b) Relationship between
the exponents α (abscissa) and β (ordinate). Apart from the data
of Fig. 4 (∘,red), the data with varying k by fixing ϵ at 0.6
(△,green), the data a ¼ 1.9 (□,blue), and a ¼ 1.7 on a regular
random network (◊, yellow), as well as that with increasing the
small-world structure (⋆, purple) and that with increasing
community structure (×, black), with fixed k and varying ϵ
are plotted. (see also Supplemental Material [37], Fig. S5). The
error bars are computed from the least-square fit of the power law.
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the parameter space, leading to power-law relaxation in
time to the absorbing state.
In GCM, the transition to chaotic synchronization occurs

at a certain ϵ value, while in the present CMN, the transition
is blurred, leading to perpetual repeat of formation and
collapse of synchronized clusters, and the power-law
distribution. In this sense, phase (ii) corresponds to the
Griffiths phase. Here, however, the global synchronization
is not an absorbing state, and the power-law behavior exists
as an attractor, not in the relaxation, in contrast to the
network Griffiths phases studied so far. Hence, we call
phase (ii) the “chaotic Griffiths phase.”
The scaling relationship α ∼ 2ðβ þ 1Þ seems to be valid,

independent of ϵ and k, as well as of a [49]. A rough
theoretical argument is as follows. In the limit to the
boundary to chaotic synchronization, β → 0 and α → 2.
For simple approximation, let us represent the change in
cluster size s by a random walk of s. In this case, as the size
s increases the probability of a move at each step increases
linearly with s, as each element in the cluster can
synchronize or desynchronize with others. Then the sta-
tionary distribution approaches PðsÞ ∼ s−2, as is derived
from the Fokker-Planck equation (FPE) ∂Pðs; tÞ=∂t ¼
∂2s2Pðs; tÞ=∂s2, corresponding to the stochastic differ-
entiation ds ¼ sdBt of Ito calculus. Next, when β > 0,
the probability of a move is expected to increase with the

cluster size s as s1þβ, since the degrees for chaos in s
elements increase with the power β, leading to an additional
increase of move probability with sβ. Thus, the above
equation is replaced by ds ¼ s1þβdBt. The stationary
distribution of the corresponding FPE is given by
∼s−2ð1þβÞ, leading to α ∼ 2ð1þ βÞ. This argument is rather
rough, and needs to be elaborated by complete theoretical
explanation in the future [50].
Apart from the present Erdös-Rényi random network as

well as regular random networks of coupled maps, we have
confirmed that even for CMNs with some structure, the
relationship between exponents α and β is again valid as
long as the chaotic Griffiths phase exists for a finite range of
parameter values. They cover networks with increased
community structure or hybrid networks between random
and small-world [see Fig. 5(b), Supplemental Material [37],
Figs. S5 and S6] [54].
To sum up, we have reported the chaotic Griffiths phase

in CMN: elements repeat formation of synchronization and
desynchronization, where the size of synchronized clusters
follows the power-law distribution with the power α. The
exponent α changes monotonically in the phase, where the
Lyapunov exponents follow the anomalous scaling with
another exponent β, while roughly maintaining a mono-
tonic relationship with α ∼ 2ðβ þ 1Þ. This relationship is
valid for a universal class of networks in which random,
nonlocal paths are dominant over structured paths, where
CGP exists in a finite range of parameters. Although we
gave a rough theoretical explanation for the relationship,
renormalization group theory needs to be developed to
confirm its universality.
The prevalence of critical states is extensively reported in

biological networks, especially in brain dynamics as a
correlation of neural activities [13,14,55,56]. The module
structure in neural connectivity is often explored as the
origin of criticality. The present chaotic Griffiths phase may
provide an alternative view on this, considering that chaotic
neural dynamics are often reported.
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