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We propose to use multiphoton interferences of photons emitted from statistically independent thermal light
sources in combination with linear optical detection techniques to reconstruct, i.e., image, arbitrary source
geometries in one dimension with subclassical resolution. The scheme is an extension of earlier work
[S. Oppel et al., Phys. Rev. Lett. 109, 233603 (2012)], where N regularly spaced sources in one dimension
were imaged by use of the Nth-order intensity correlation function. Here, we generalize the scheme to
reconstruct any number of independent thermal light sources at arbitrary separations in one dimension,
exploiting intensity correlation functions of order m > 3. We present experimental results confirming the
imaging protocol and provide a rigorous mathematical proof for the obtained subclassical resolution.
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Higher order interferences with photons emitted by
statistically independent light sources are an active field
of research with the potential to increase the resolution in
spectroscopy, lithography, and interferometry [1-6], as well
as in imaging and microscopy [7-20]. So far, subclassical
resolution has been achieved by using entangled photons
[3,8], but it was also shown that initially uncorrelated light
fields—nonclassical as well as classical—can be employed
for that purpose [13-20]. Recently, Oppel et al. presented a
detection scheme that allows us to determine the source
distance d for an array of N equidistant thermal light
sources (TLS) with subclassical resolution by measuring
the Nth-order spatial intensity correlation function [14].

In this Letter we show that the scheme presented in
Ref. [14] can be generalized to reconstruct, i.e., image, any
number of independent TLS at arbitrary separations in one
dimension, by exploiting photon correlation functions of
order m > 3. Measuring higher order correlations enables
us to isolate the spatial frequencies of the setup allowing us
to determine the source distribution with a resolution below
the classical Abbe limit. We outline the imaging protocol
and present experimental results verifying the theoretical
predictions. A physical explanation and rigorous math-
ematical proof of the protocol and the spatial frequency
filtering process is given in the Supplemental Material [21].

We assume N TLS aligned on a grid in one dimension with
lattice constant d at arbitrary separations, such that
|R[+1 —R1| :de, with X € N, [ = 1, ,N— 1. The
source geometry is thus determined by the lattice
constant d and the N —1 adjacent source distances
X = (x1,x,, ..., xy_1), Whereas the spatial frequencies of
the system are given by the tuple of source pair
distances {&} = {(x1); (xy 4+ x2)5 .3 (xp, + -+ xp,)5 .3
(x; 4+ -4+ xy_1)} (see Fig. 1).
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To access the set of spatial frequencies {£} we make use

of the normalized spatial mth-order intensity correlation

function gx") (ry,...

sities at positions ry, ...

,T,,) obtained by correlating the inten-
,1,, in the far field [31],

Here, (:-:), denotes the (normally ordered) quantum
mechanical expectation value for a system in the state p
and EC) (r;) and E® (r;) are the positive and negative
frequency parts of the total electric field operator at position
r;, given by EC(r;) = [ED)(r))]" « 3 e ua; [14]. In
the last expression, &; is the annihilation operator of a
photon emitted by source / at R; and r;; = |R; —r;|. Note
that since we assume the emitters to be statistically
independent, the state of the field is given by p =®; p;,

A \,_/D1(51)
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FIG. 1. Scheme of the considered setup: N TLS are arbitrarily
aligned on a grid in one dimension with lattice constant d such
that |[R;,; — R;| = x;d, with x; €N, I =1,...,N — 1. In the far
field of the sources m detectors D;, j = 1,...,m, measure the
intensities at ry, ..., r,,, with §; = §,(r;) = kd sin [§;(r;)].
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with p; =5, P;(n)|n)(n|, where P;(n) is the photon
number distribution of source [ [32].

In the case of a regular source arrangement with N
equidistant TLS at separation d and m — 1 detectors placed
atr, = --- =r, = 0 the mth-order correlation function as
a function of the position of the first detector takes the form
g (r1;0) =g (51:0) e+ N5 (N = ) cos(15,),  with
5; = 8;(r;) = kdsin[0,(r;)] [32,33]. Note that gy (r;)
displays all N —1 different spatial frequencies Id,
[=1,...,N—1, of the setup, equally obtained when
measuring the intensity distribution of a coherently illumi-
nated N slit grating with slit separation d.

For an irregular source arrangement with arbitrary
separations it turns out that by placing m — 1 detectors
at the so-called magic positions [14]

8 = 21(j—2)/(m — 1)

] j=2,....m, (2)

all spatial frequencies of the source arrangement are sup-
pressed in gj(\',") (61), except those fulfilling the condition

k(m=1) = (x, +---+x,) € {&}, (3)

with k¥ € N. In this case the mth-order intensity correlation
function takes the form [21]

o) (81) = AL + DA coslk(m = 1)), (4)

where A,((m) is the amplitude of the modulation with

frequency x(m — 1); if no element of {&} fulfills Eq. (3),
ie., all spatial frequencies (x; +---+x;,) € {&} differ

from x(m — 1), we obtain gy (5;) = Al"™ = const.
The magic positions can be determined by changing the
positions r»,...,r, of the detectors D,,...,D,, while

monitoring the interference pattern gg\,m)(él) until a modu-

lation of the form EKAf(m) cos[k(m — 1)8,] appears [34]
(for details see Ref. [21]). In this case the relative phase
relation &; — §;_; = 2z/(m—1), j=3,...,m is fulfilled
[see Eq. (2)]. The lattice constant d can then be deduced
from 6; and 6,_, viad = A/{(m — 1)[sin(6;) — sin(0,_;)]}.
Note further that, in view of Eqgs. (3) and (4), the regular
source distribution discussed in Ref. [14] is a special case
of the outlined imaging protocol with m = N. Indeed, for

X] =Xy ="--+=2xy_; =1 we obtain for m = N
v (6) = 45" + AR cos[(N=Dsi].  (5)

However, in contrast to Eq. (5), the spatial frequency
filtering process of Eqgs. (3) and (4) neither depends on
the number of sources, i.e., it can be applied for m # N, nor
does it rely on a particular source geometry x [21].

Measuring gg\,m) (61) for m > 3 allows us to determine all

spatial frequencies € {¢} fulfilling Eq. (3). However, since
not all of the N(N —1)/2 spatial frequencies of the
unknown source geometry x are necessarily different,
the scheme has access only to the smaller set of all different
spatial frequencies

F = {all different spatial frequencies € {} } = {f}. (6)

F still contains a large amount of information, narrowing
down the set of possible source geometries substantially so
that in most cases a unique solution can be obtained.

Consider, for example, the case x = (3, 1,4). Here, the
set of different spatial frequencies is given by
F ={1,3,4,5,8}. Measuring all intensity correlation
functions of order 3 < m <9 leads to a unique solution
for the number and distribution of sources [21].

F={1,3458 >N=4 with x=(3,1.4); (7)

i.e., a unique reconstruction (imaging) of the unknown
source geometry can be achieved. By contrast, for the set of
spatial frequencies F = {1,3,4,5,8,9} two possible sol-
utions for the unknown source geometry exist, namely,

N=4 x=(1,3,5)
F={1,3,4,5,8,9} - (8)
N=5 x=(1,3,1.4).

To remove the remaining ambiguity, additional information

can be extracted from the amplitudes A,(cm)

functions gx") (61), m > 3 [cf. Eq. (4)]. As an example, we

display ¢©)(8,) for the two scenarios of Eq. (8) in Fig. 2.
The difference in (relative) amplitudes is clearly visible,
enabling a discrimination between the two solutions. As it
turns out a unique solution can always be obtained when
using the information of the amplitudes of the correlation
functions [21].

Note that the determination of F makes small demands to
the experimental data as only the spatial frequencies are to
be identified (see Fig. 3). The second step—reconstructing
the source geometry x from F—sometimes requires a better
data quality as in order to remove ambiguities the ampli-

of the correlation

tudes A,((m) of the modulations have to be taken into account.

The proposed imaging technique allows us to reconstruct
the source geometry x with a resolution below the Abbe
limit. According to Abbe, for a given numerical aperture A,
the smallest resolvable distance is given by d;, = 1/(2A),
where 1 is the wavelength of the light emitted by the
sources [35]. The range &, € [0, 2x] is required in the far
field to resolve this distance as two adjacent principal
maxima are separated by Ao, = 2z [see dashed (black)
arrow in Fig. 2(a)]. By contrast, using the imaging protocol
outlined above, the moving detector D, requires only the
range Ad; = 2x/(m — 1) to scan two adjacent maxima, as
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FIG.2. (a) Gﬁ? (61) for N = 4 coherently emitting sources with
distances x = (3, 1, 4) [solid (black) curve] and gj\f)(él) for both
scenarios of Eq. (8): N =4 TLS [dotted-dashed (green) curve]
and N = 5 TLS [dotted (magenta) curve]; for the latter two cases
four detectors are fixed at the magic positions. The numerical
aperture .A(ll) required by the classical Abbe limit is indicated by
the dashed (black) arrow below the x axis; the numerical aperture
A(lm) required for D; to scan from one to the next principal
maxima is indicated by the solid (red) arrow below the x axis; the
numerical aperture Agm)m required by all detectors Dj,
j=1,...,5 is indicated by the blue-shaded area (see Fig. 1).

(b) Numerical apertures .A(ll), Aﬁ’”), and A"

| m (n units of

Agl) = Apppe) as a function of correlation order m. As can be
seen, Asm) and A"

|, Temain always smaller than A(1]>.

the fringe spacing is reduced by (m — 1) [see Eq. (4)].
Because of the reduced numerical aperture AY") required
for the moving detector, the resolution for the moving
detector is enhanced by the same factor, i.e., overcoming
the classical resolution limit by (m — 1) [see red squares in
Fig. 2(b)] [14]. Considering the angular range of all
detectors, i.e., including the detectors placed at the magic

positions, the required numerical aperture AE’”)m increases
[see blue diamonds in Fig. 2(b)]. However, Aﬁ’”)m remains

below the aperture A(ll) required by the Abbe limit for all
m > 3 [see Fig. 2(b)]. The proposed imaging protocol is
thus able to reconstruct the source geometry with sub-
classical resolution. Moreover, it allows us to determine the
spatial frequencies of the source ensemble with a substan-
tially reduced number of fit parameters in comparison to
classical imaging techniques. In the former case only one or
at most few spatial frequencies have to be determined from

g™ (8,), whereas in the case of classical imaging tech-
niques all spatial frequencies have to be identified in the
Fourier plane at once.

For an experimental demonstration of the proposed
imaging technique we used up to four statistically inde-
pendent pseudothermal light sources (see Fig. 3). The
pseudo-TLS were realized by use of a He-Ne laser at
A =632.8 nm coupled into multimode fibers of diameter
~50 ym. The superposition of many modes in a given
multimode fiber leads to a field with Gaussian statistics at
the fiber output, equal to the Gaussian statistics of a TLS
[36]. By mechanically shaking the fiber the modes are
dynamically mixed leading to the required variation of the
pseudothermal field in time. Since multiphoton interfer-
ences of classical sources can be measured in the high-
intensity regime [37], a conventional digital camera located
in the far field of the fibers (z ~0.40 m) was used to
measure the light intensity. Each pixel of the camera can be
regarded as an individual detector. Intensity correlations of
arbitrary order ¢ (6, ...,5,,) can be derived by correlat-
ing the gray values of m pixels at 6;,, j=1,...,m (see
Fig. 1) [33]. A linear polarizer was placed in front of the
camera to ensure that light of equal polarization is
employed.

One-dimensional arrangements of pseudo-TLS with
varying sets of source separations x were realized by
placing the end facets of the fibers onto grooves of a
mechanical grid with lattice constant d = 570 ym. In this
way the source geometries displayed in Fig. 3 have been
implemented. To obtain interference signals of high vis-
ibility, the integration time of the camera z; ~ 100 us was
chosen to be much shorter than the coherence time of the
TLS (z, ~ 10 ms).

The experimental results for three different source
arrangements are shown in Fig. 3. For each setup we
collected N = 1000 camera images (corresponding to a
total measurement time ~500 s), each with a different
realization of the pseudothermal field. The intensity dis-
tribution was confirmed to be thermal by measuring the
instantaneous intensities at each pixel over the set of 1000
camera images [36]. By correlating m — 1 pixels at the
magic positions [see Eq. (2)] with another pixel at §; we
derived g™ (6;) form = 3, ..., 6. Note that the finite lateral
extension of the pseudothermal sources should principally
lead to a spatial envelope of ¢ (5, ). However, due to the
small size of the fiber cores this modification is small and
can be neglected (see Fig. 3); this allows us to use Eq. (4) as
a fit function for the experimental results [21].

Table I displays the mean values for the set of spatial
frequencies and corresponding amplitudes, obtained from a
least squares fit for the correlation orders m = 3, ..., 6,
together with their uncertainties, using ten different pixels
for the phase reference §, = 0. According to the theory all
occurring spatial frequencies should be integer numbers
[see Eq. (3)]. This is confirmed to better than 5% by our
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FIG. 3. Measured mth-order correlation function g(’") (6;) form = 3, ..., 6 [dotted (black) curves], where m — 1 detectors are placed at

the magic positions [see Eq. (2)], together with the theoretically expected signals according to Eq. (4) [solid (blue) curves] for the three
source configurations shown on the left. The two lower configurations, having an equal set of source distances but different source

arrangements x and thus different set of spatial frequencies F, can be clearly distinguished by the imaging protocol.

experimental results, allowing us to uniquely identify the
respective integers (see Table I). The measured amplitudes
do not match the theory equally well as the spatial
frequencies and show larger uncertainties (see Fig. 3 and
Table I). Yet in all three cases the investigated source
arrangements can readily be determined from the exper-
imental data (see left side of Fig. 3).

The uncertainties consist of statistical errors (less than
1%) and systematic errors, e.g., due to the finite extensions
of the sources, unequal intensities, and the finite size of the
CCD pixels [21]. The latter prevents the m — 1 fixed
detectors from being located exactly at the magic positions.
Hence, a modulation can be seen sometimes in the ¢
signal although a constant is expected. However, trying to
fit these signals with a modulated function leads to
extraordinarily large statistical errors of the fitted fre-
quency, making these cases easily identifiable [see, e.g.,

ggé) (61) in Fig. 3 and Table I].

In conclusion, we presented a new imaging protocol
making use of spatial intensity correlation functions ¢ of
order m > 3 to derive the set of different spatial frequencies
F of an arbitrary arrangement of TLS in one dimension.
The scheme allows us to isolate the spatial frequencies of
the system within different correlation orders; in this way
all relevant information about the source distribution can be
extracted with a substantially reduced number of fit
parameters in comparison to classical imaging techniques.
Linking F to the set of adjacent source distances x allows in
most cases for a unique reconstruction, i.e., imaging, of the
source arrangement; remaining ambiguities can be removed
by taking the amplitudes of the modulations of ¢ into
account. The scheme allows for subclassical imaging; i.e.,
it requires a numerical aperture smaller than the classical
Abbe limit. Experimental results verifying the theoretical
predictions are presented. The method relies on linear
optical detection and spatial photon cross correlations in

TABLE 1. Experimentally measured mean values for the spatial frequencies f; and corresponding amplitudes AE'"> according to
Egs. (3) and (4), obtained for the correlation orders m = 3, ..., 6, with corresponding uncertainties (for details see text).

m=23 m=4 m=>5 m==6

x F 7i AP 7i na 7i A® 7 A©
3, D {1,3,4} 4.02+0.10 0.324+0.08 293 +£0.10 0.51 £0.19 4.02+0.10 2.47 £0.88 3.90 £0.40 1.05+£ 0.66

1.96 £0.06 0.20 +0.04 3.02+0.09 0.08 +0.01 3.98 +£0.10 1.09+£0.24 493 +0.13 1.28+£0.16
(1, 3,2) {1,2,3,4,5,6} 3.98+0.10 0.25+0.03 5.94+0.15 0.59 £0.15

5.94 £0.15 0.33 £0.05

2.09 £0.06 0.18 =20.02 3.01 £0.08 1.29+0.14 4.00+0.10 0.56 £0.13 2.99 £0.62 0.58 +0.52
2, 1,3 {1,2,3,4,6} 3.97+0.10 0.05+0.01 6.06+0.15 0.51 £0.08

6.06 £0.15 0.17 £0.03
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the far field of the sources. It thus differs from super-
resolving multiphoton imaging techniques based on non-
linear effects in particular atomic transitions [38-40], or
exploiting higher order autocorrelations [15-17,19]. As this
approach is independent from the photon wavelength and
works without refractive optical elements, potential appli-
cations in x-ray imaging but also in astronomy, biology,
medicine, and the technical sciences are expected, poten-
tially limited to smaller numbers of sources.

The authors gratefully acknowledge funding by
the Erlangen Graduate School in Advanced Optical
Technologies (SAOT) by the German Research
Foundation (DFG) in the framework of the German
excellence initiative. D.B. gratefully acknowledges
financial support by the Cusanuswerk, Bischofliche
Studienforderung. J.v.Z and A.C gratefully acknowl-
edge financial support by the Staedtler Stiftung.

*Corresponding author.
anton.classen @fau.de

[1] D. Leibfried, M.D. Barrett, T. Schaetz, J. Britton, J.
Chiaverini, W. M. Itano, J. D. Jost, C. Langer, and D.]J.
Wineland, Science 304, 1476 (2004).

[2] A.N. Boto, P. Kok, D.S. Abrams, S.L. Braunstein, C.P.
Williams, and J.P. Dowling, Phys. Rev. Lett. 85, 2733
(2000).

[3] M. D’Angelo, M. V. Chekhova, and Y. Shih, Phys. Rev.
Lett. 87, 013602 (2001).

[4] M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, Nature
(London) 429, 161 (2004).

[5] P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni,
and A. Zeilinger, Nature (London) 429, 158 (2004).

[6] P.R. Hemmer, A. Muthukrishnan, M. O. Scully, and M. S.
Zubairy, Phys. Rev. Lett. 96, 163603 (2006).

[71 M.C. Teich and B.E.A. Saleh, Cesk. Cas. Fyz. 47, 3
(1997).

[8] A. Muthukrishnan, M. O. Scully, and M. S. Zubairy, J. Opt.
B: Quantum Semiclass. Opt. 6, S575 (2004).

[9] G.S. Agarwal, G. O. Ariunbold, J. von Zanthier, and H.
Walther, Phys. Rev. A 70, 063816 (2004).

[10] C. Thiel, T. Bastin, J. Martin, E. Solano, J. von Zanthier, and
G.S. Agarwal, Phys. Rev. Lett. 99, 133603 (2007).

[11] S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd,
L. Maccone, S. Pirandola, and J. H. Shapiro, Phys. Rev.
Lett. 101, 253601 (2008).

[12] S. Lloyd, Science 321, 1463 (2008).

[13] V. Giovannetti, S. Lloyd, L. Maccone, and J. H. Shapiro,
Phys. Rev. A 79, 013827 (2009).

[14] S. Oppel, T. Biittner, P. Kok, and J. von Zanthier, Phys. Rev.
Lett. 109, 233603 (2012).

[15] O. Schwartz and D. Oron, Phys. Rev. A 85, 033812 (2012).

[16] O. Schwartz, J. M. Levitt, R. Tenne, S. Itzhakov, Z. Deutsch,
and D. Oron, Nano Lett. 13, 5832 (2013).

[17] T. Dertinger, A. Pallaoro, G. Braun, S. Ly, T. A. Laurence,
and S. Weiss, Q. Rev. Biophys. 46, 210 (2013).

[18] E.D. Lopaeva, I. Ruo Berchera, I.P. Degiovanni, S.
Olivares, G. Brida, and M. Genovese, Phys. Rev. Lett.
110, 153603 (2013).

[19] D. Gatto Monticone, K. Katamadze, P. Traina, E. Moreva, J.
Forneris, 1. Ruo-Berchera, P. Olivero, 1. P. Degiovanni, G.
Brida, and M. Genovese, Phys. Rev. Lett. 113, 143602 (2014).

[20] M. E. Pearce, T. Mehringer, J. von Zanthier, and P. Kok,
Phys. Rev. A 92, 043831 (2015).

[21] See  Supplemental Material at  http:/link.aps.org/
supplemental/10.1103/PhysRevLett.117.253601 for more
detailed descriptions and calculations, which includes
Refs. [22-30].

[22] L. S. Reed, IRE Trans. Inf. Theory 8, 194 (1962).

[23] P. van Cittert, Physica (Amsterdam) 1, 201 (1934).

[24] F. Zernike, Physica (Amsterdam) 5, 785 (1938).

[25] H.J. Ryser, Combinatorial Mathematics, Carus Mathemati-
cal Monographs (Mathematical Association of America,
Wiley, New York, 1963).

[26] D.G. Glynn, Eur. J. Combinatorics 31, 1887 (2010).

[27] D. Zhang, Y.-H. Zhai, L.-A. Wu, and X.-H. Chen, Opt. Lett.
30, 2354 (2005).

[28] X.-H. Chen, Q. Liu, K.-H. Luo, and L.-A. Wu, Opt. Lett. 34,
695 (2009).

[29] P.K. Tan, G.H. Yeo, H.S. Poh, A.H. Chan, and C.
Kurtsiefer, Astrophys. J. Lett. 789, L.10 (2014).

[30] R. Hanbury Brown and R. Q. Twiss, Nature (London) 178,
1046 (1956).

[31] R.J. Glauber, Phys. Rev. 130, 2529 (1963).

[32] D. Bhatti, S. Oppel, R. Wiegner, G. S. Agarwal, and J. von
Zanthier, Phys. Rev. A 94, 013810 (2016).

[33] S. Oppel, R. Wiegner, G. S. Agarwal, and J. von Zanthier,
Phys. Rev. Lett. 113, 263606 (2014).

[34] If no modulation appears in gx")(él) this means that the
setup contains no spatial frequency fulfilling the condition
of Eq. (3).

[35] M. Born and E. Wolf, Principles of Optics, 7th ed.
(Cambridge University Press, Cambridge, 1999).

[36] T. Mehringer, S. Oppel, and J. von Zanthier, arXiv:
1611.09161.

[37] I. N. Agafonov, M. V. Chekhova, T. S. Iskhakov, and A. N.
Penin, Phys. Rev. A 77, 053801 (2008).

[38] S. W. Hell and J. Wichmann, Opt. Lett. 19, 780 (1994).

[39] E. Betzig, Opt. Lett. 20, 237 (1995).

[40] R.M. Dickson, A.B. Cubitt, R.Y. Tsien, and W.E.
Moerner, Nature (London) 388, 355 (1997).

253601-5


http://dx.doi.org/10.1126/science.1097576
http://dx.doi.org/10.1103/PhysRevLett.85.2733
http://dx.doi.org/10.1103/PhysRevLett.85.2733
http://dx.doi.org/10.1103/PhysRevLett.87.013602
http://dx.doi.org/10.1103/PhysRevLett.87.013602
http://dx.doi.org/10.1038/nature02493
http://dx.doi.org/10.1038/nature02493
http://dx.doi.org/10.1038/nature02552
http://dx.doi.org/10.1103/PhysRevLett.96.163603
http://dx.doi.org/10.1088/1464-4266/6/6/017
http://dx.doi.org/10.1088/1464-4266/6/6/017
http://dx.doi.org/10.1103/PhysRevA.70.063816
http://dx.doi.org/10.1103/PhysRevLett.99.133603
http://dx.doi.org/10.1103/PhysRevLett.101.253601
http://dx.doi.org/10.1103/PhysRevLett.101.253601
http://dx.doi.org/10.1126/science.1160627
http://dx.doi.org/10.1103/PhysRevA.79.013827
http://dx.doi.org/10.1103/PhysRevLett.109.233603
http://dx.doi.org/10.1103/PhysRevLett.109.233603
http://dx.doi.org/10.1103/PhysRevA.85.033812
http://dx.doi.org/10.1021/nl402552m
http://dx.doi.org/10.1017/S0033583513000036
http://dx.doi.org/10.1103/PhysRevLett.110.153603
http://dx.doi.org/10.1103/PhysRevLett.110.153603
http://dx.doi.org/10.1103/PhysRevLett.113.143602
http://dx.doi.org/10.1103/PhysRevA.92.043831
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.253601
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.253601
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.253601
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.253601
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.253601
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.253601
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.253601
http://dx.doi.org/10.1109/TIT.1962.1057719
http://dx.doi.org/10.1016/S0031-8914(34)90026-4
http://dx.doi.org/10.1016/S0031-8914(38)80203-2
http://dx.doi.org/10.1016/j.ejc.2010.01.010
http://dx.doi.org/10.1364/OL.30.002354
http://dx.doi.org/10.1364/OL.30.002354
http://dx.doi.org/10.1364/OL.34.000695
http://dx.doi.org/10.1364/OL.34.000695
http://dx.doi.org/10.1088/2041-8205/789/1/L10
http://dx.doi.org/10.1038/1781046a0
http://dx.doi.org/10.1038/1781046a0
http://dx.doi.org/10.1103/PhysRev.130.2529
http://dx.doi.org/10.1103/PhysRevA.94.013810
http://dx.doi.org/10.1103/PhysRevLett.113.263606
http://arXiv.org/abs/1611.09161
http://arXiv.org/abs/1611.09161
http://dx.doi.org/10.1103/PhysRevA.77.053801
http://dx.doi.org/10.1364/OL.19.000780
http://dx.doi.org/10.1364/OL.20.000237
http://dx.doi.org/10.1038/41048

