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We present a method to deform (generically non-Abelian) T duals of two-dimensional σ models, which
preserves classical integrability. The deformed models are identified by a linear operator ω on the dualized
subalgebra, which satisfies the 2-cocycle condition. We prove that the so-called homogeneous Yang-Baxter
deformations are equivalent, via a field redefinition, to our deformed models when ω is invertible. We
explain the details for deformations of T duals of principal chiral models, and present the corresponding
generalization to the case of supercoset models.
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Introduction.—Integrable models in two dimensions
have played a pivotal role in the understanding of (quan-
tum) field theory, have numerous applications in condensed
matter theory, and have recently attracted attention also in
the context of the AdS=CFT correspondence [1], which
relates certain string theories on (dþ 1)-dimensional anti–
de Sitter (AdS) backgrounds to conformal field theories in
d dimensions. The most studied example that exhibits
integrable structures is that of the superstring on AdS5 × S5

[2] and its dual N ¼ 4 super Yang-Mills theory in four
dimensions [3], see Refs. [4,5] for reviews. On the string
side the two-dimensional world sheet theory is classically
integrable; i.e., there is a Lax pair whose flatness condition
is equivalent to the equations of motion of the σ model. The
Lax pair depends on an auxiliary spectral parameter z, and
its expansion around a fixed z0 yields an infinite set of
conserved charges, see Ref. [6] for a review. Integrability
has provided the most stringent tests of AdS=CFT, culmi-
nating with the possibility of computing the spectrum of the
quantum theory in the large N limit exactly [7–10].
Given this tremendous success it is natural to ask whether

other theories that are not maximally (super)symmetric are
still integrable. Integrability could then also be a guiding
principle to discover newmodels that are interesting in their
own right. The β deformation [11–13] or certain gravity
duals of noncommutative gauge theories [14,15] are exam-
ples that are integrable but reduce to the maximally
symmetric case only when a deformation parameter is sent
to zero. These instances actually fall into a larger class that
goes under the name of Yang-Baxter (YB) models [16–19],
sometimes also called η deformations after the deformation
parameter. AYB model is identified by an Rmatrix solving
the classical Yang-Baxter equation (CYBE), which in
general has a rich set of solutions. Each R generates a
background that reduces to the undeformed model (e.g.,
AdS5 × S5) in the η → 0 limit. Here, we will not consider
the case of the “modified” CYBE.
In this Letter we explore another possibility; we deform

the original σ model by adding a topological term (a closed

B field) and then apply non-Abelian T duality (NATD) [20]
with respect to a subgroup ~G of the isometry group G. The
special case when ~G is Abelian gives so-called TsT
transformations [11–13]. We refer to the resulting actions
as deformed T dual (DTD) models, since sending the
deformation parameter ζ → 0 they reduce to NATD.
DTD models are in one-to-one correspondence with the
2-cocycles ω of the Lie algebra of ~G. The cocycle condition
(3) guarantees that integrability is preserved, and plays the
same role as the CYBE for YB models.
The analogy goes even further. When ω is invertible its

inverse R ¼ ω−1 solves the CYBE, and each solution of the
CYBE corresponds to an invertible 2-cocycle [21]. We use
this identification to show that the action of YB models can
be recast in the form of DTD models, where the two
deformation parameters are simply related by η ¼ ζ−1. As
explained later, this translates into our language a recent
conjecture by Hoare and Tseytlin [22]. We prove it by
providing the explicit field redefinition that relates YB to
DTD models. The field redefinition is local, albeit in
general nonlinear, and it allows us to interpolate between
a certain σ model (ζ → ∞) and its NATD (ζ → 0). In the
case when ω is degenerate, the DTD model is equivalent to
a combination of YB deformation and NATD.
We first construct the DTD of the principal chiral model

(PCM), since it provides a simpler setup where all the
essential features already appear. Later, we generalize it to
the case of supercosets, which is more relevant to the study
of deformations of superstrings. The supercoset case will be
described in more detail elsewhere [23].
DTD of the PCM.—We start from a PCM parametrized

by a group element g ∈ G, with the familiar action
S½g� ¼ − 1

2

R
Trðg−1∂þgg−1∂−gÞ. Since we want to dualize

a ~G subgroup of the left copy of G [24] we rewrite [25]

S½f; ~A; ν� ¼ −
1

2

Z
Trðð ~Aþ þ JþÞð ~A− þ J−Þ þ ν ~Fþ−Þ: ð1Þ
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Here, J ¼ dff−1 is a right-invariant Maurer-Cartan form
for f ∈ G, depending on fields that remain spectators under
NATD. At the same time ~A ∈ ~g and ν ∈ ~g� identify each of
the two T-dual frames. If Ti are generators for ~g, a basis for
the dual algebra ~g� is given by Ti, where TrðTiTjÞ ¼ δji .
The curvature of ~A is ~Fþ− ¼ ∂þ ~A− − ∂− ~Aþ þ ½ ~Aþ; ~A−�.
The original PCM is recovered upon integrating out ν since
~Fþ− ¼ 0 implies that ~A is pure gauge, i.e., ~A ¼ ḡ−1dḡ for a
ḡ ∈ ~G, and we get the desired action with g ¼ ḡf. The
NATD with respect to ~G, on the other hand, is obtained by
integrating out ~A.
We now add a deformation with parameter ζ given by

S0½f; ~A; ν� ¼ S½f; ~A; ν� þ ζ

2

Z
Trð ~Aþω ~A−Þ: ð2Þ

Here, ω: ~g → ~g� is a linear antisymmetric [i.e., TrðxωyÞ ¼
−TrðωxyÞ] map satisfying the cocycle condition [26]

ωadxy ¼ adxωy − adyωx; ∀ x; y ∈ ~g: ð3Þ

This property is needed to have local ~G invariance also
for ζ ≠ 0, which ensures that # d:o:f: ¼ dimðGÞ [27].
Equations of motion for ~A give

R
Trðδ ~A∓E�Þ ¼ 0, where

E� ≡ ð1� adν � ζωÞ ~A� ∓ ∂�νþ J�: ð4Þ

This implies ~PTE� ¼ 0, where ~P projects onto ~g, ~PT onto
~g�. We solve these equations by defining the linear operator
~O ¼ ~PTð1 − adν − ζωÞ ~P, which is a map ~g → ~g�

~A− ¼ ~O−1ð−∂−ν − J−Þ; ~Aþ ¼ ~O−Tð∂þν − JþÞ ð5Þ

and ~O−T is the inverse of its transpose. Note that
~O−1 ~O ¼ ~P as the lhs is defined only on ~g. Evaluating S0
on the solution we get the DTD action

S0½f; ν� ¼ −
1

2

Z
TrðJþJ− þ ð∂þν − JþÞ ~O−1ð∂−νþ J−ÞÞ:

ð6Þ

A second interpretation of DTD comes from integrating out
ν rather than ~A from Eq. (2), which gives again ~A ¼ ḡ−1dḡ.
The resulting action is a topological deformation of the
PCM, since the cocycle condition implies that B ¼
ζωðḡ−1dḡ; ḡ−1dḡÞ is closed. At the classical level adding
this term has no effect, and in fact this picture of a
deformation that is trivial in the dual frame is reminiscent
of YB models: in some cases they correspond to TsT
transformations [22,28–30], which are just field redefini-
tions in a T-dual frame. Since DTD is a NATD of a
topological deformation of the PCM, it is classically

integrable, where NATD can be applied thanks to closure
of B. In fact, the equation ~A ¼ ḡ−1dḡ with ~A given in
Eq. (5) allows us to relate the variables of the deformed
model to those of the original PCM. In the special case of
Abelian subalgebra ~g the relation simplifies and the
deformed model becomes equivalent to the PCM with
twisted boundary conditions, consistent with the TsT
interpretation [12].
A third interpretation of DTD comes from the possibility

of applying NATD to a centrally extended subalgebra. This
idea first appeared in Ref. [22] and was the original
motivation for considering the deformation (2). One can
indeed replace ~A in Eq. (1) with ~A0 ∈ ~gc:e: ¼ ~g ⊕ c and c
central; similarly ν0 ∈ ~g�c:e:. We decompose ~A0 ¼ ~Aþ ~Ac,
ν0 ¼ νþ νc with obvious notation, and extend the defini-
tion of the trace Trðc2Þ ¼ 1, TrðcgÞ ¼ 0. Equations for
~Ac imply that νc is constant, νc ¼ ζc. At this point
Trðν0 ~F0

þ−Þ ¼ Trðν ~Fþ−Þ þ ζfab ~A
a
þ ~Ab

−, where fab are the
structure constants introduced by the central extension
½Ta; Tb� ¼ fcabTc þ fabc. Introducing a map ω whose
components are ωab ¼ −fab we just notice that it is
antisymmetric and satisfies the cocycle condition, a con-
sequence of the Jacobi identity in ~gc:e: projected on c.
For some ω’s DTD reduces to just NATD; i.e.,

the deformation parameter can be removed by a field
redefinition. This happens when ω is a coboundary, i.e.,
ωðx; yÞ ¼ fð½x; y�Þ for some function f. Therefore, non-
trivial deformations are in one-to-one correspondence with
2-cocycles modulo coboundaries, i.e., with elements of the
second cohomology group H2ð~gÞ. The same holds also for
nontrivial central extensions. In particular, there are none
for semisimple ~g. Trivial deformations are equivalently
described as adding an exact B field to the PCM.
An example.—Before continuing our general discussion,

let us provide an explicit example: a PCM on Uð2Þ. We use
generators Tj ¼ iσj ∈ suð2Þ and T4 ¼ i1, with duals Tj ¼
−ði=2Þσj and T4 ¼ −ði=2Þ1. We parametrize the group
element by g¼expðiθ1Þexpðiϕþσ1ÞǧðξÞexpðiϕ−σ2Þ, where
ϕ� ¼ ðϕ1 � ϕ2Þ=2 and ǧðξÞ ¼ diagði−1=2eiξ; i1=2e−iξÞ. The
PCM action yields the metric of S3 × S1

ds2 ¼ dξ2 þ sin2ξdϕ2
1 þ cos2ξdϕ2

2 þ dθ2: ð7Þ

Suppose we want to dualize the coordinates ϕþ in S3 and θ
in S1, corresponding to the Abelian subalgebra ~g ¼
spanfT1; T4g. We take f ¼ ǧðξÞ expðiϕ−σ2Þ and ν ¼
2ð ~ϕþT1 þ ~θT4Þ, where ~ϕþ, ~θ are dual coordinates. We
deform the dual theory by taking ω ¼ 2T1 ∧ T4; namely,
ωT1 ¼ −2T4, ωT4 ¼ 2T1. From Eq. (6) we find the action
of DTD S0 ¼ R ∂þXiðGij − BijÞ∂−Xj, with the metric and
B field
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ds2 ¼ dξ2 þ ð1þ ζ2Þ−1ðd ~ϕ2
þ þ ðζ2 þ sin22ξÞdϕ2

−

þ d~θ2 þ 2ζ cos 2ξd~θdϕ−Þ;
B ¼ ð1þ ζ2Þ−1ðcos 2ξdϕ− − ζd~θÞ ∧ d ~ϕþ: ð8Þ

The ζ → 0 limit yields the T-dual model of S3 × S1

with respect to ~g. To relate this simple example to a YB
model it is enough to take ν ¼ η−1RðϑT4 þ φþT1Þ with
R ¼ 1

2
ðT4 ∧ T1Þ. However, when ~g is non-Abelian, the

field redefinition is more complicated, see Eq. (13).
Integrability.—Above we argued that DTD models must

be integrable; however, it is instructive to show this
explicitly to see how the cocycle condition enters and
write a Lax connection. We will show that the equations of
motion formally resemble those of the PCM, for which a
Lax pair is known. Suppose we consider a PCM with group
element g ¼ ḡf, with ḡ ∈ ~G, f ∈ G. We prefer to rewrite its
on-shell equations in terms of the left and right currents
~A ¼ ḡ−1dḡ and J ¼ dff−1. To start, the flatness condition

for A ¼ g−1dg is equivalent to F J ¼ 0, F ~A ¼ 0

F J ≡ ∂þJ− − ∂−Jþ − ½Jþ; J−�;
F ~A ≡ ∂þ ~A− − ∂− ~Aþ þ ½ ~Aþ; ~A−�: ð9Þ

Moreover, the equations of motion for the PCM, i.e.,
conservation of A, become C ¼ 0,

C≡ ∂þðJ− þ ~A−Þ þ ∂−ðJþ þ ~AþÞ
þ ½ ~Aþ; J−� þ ½ ~A−; Jþ�: ð10Þ

Let us now rederive the above equations for DTD models,
where now importantly ~A is identified as in Eq. (5). To start,
the flatness condition F J ¼ 0 still follows from the
definition of J. Flatness for ~A, instead, now arises as the
equations of motion for ν, which are δνS0½f; ν� ¼
− 1

2

R
TrðδνF ~AÞ ¼ 0. It is nice that the known mechanism

familiar from T duality of trading flatness for an equation of
motion still holds for DTD models.
The equations of motion for f are δfS0½f; ν� ¼

þ 1
2

R
Trðδff−1CÞ ¼ 0, essentially as in the previous exam-

ple of the PCM. However, in that case it is only thanks to
the equations of motion for ḡ [i.e.,

R
Trðḡ−1δḡCÞ ¼ 0] that

one can claim C ¼ 0. In analogy to the PCM, it is then clear
that our task is to show that ~PTC ¼ 0 also for DTD models.
We generalize the argument of Ref. [31] for NATD of the
PCM, and consider the equations E� ¼ M⊥

�, for some M⊥
�

for which ~PTM⊥
� ¼ 0. They imply ~PTE� ¼ 0; i.e., they are

equivalent to the solutions for ~A as in Eq. (5). They
obviously imply also the equation ð∂þþ ad ~Aþ

ÞðE− −M⊥
−Þþ

ð∂−þ ad ~A−
ÞðEþ−M⊥þÞ¼ 0, which reads as

C ¼ ½∂− þ ad ~A−
; ∂þ þ ad ~Aþ

�ν
− ð∂− þ ad ~A−

ÞM⊥þ − ð∂þ þ ad ~Aþ
ÞM⊥

−

þ ζ½ωð∂þ ~A− − ∂− ~AþÞ þ ad ~Aþ
ω ~A− − ad ~A−

ω ~Aþ�:

The first line on the right-hand side is rewritten as ½ν; ~Fþ−�,
and hence vanishes thanks to the flatness of ~A. The second
line vanishes upon projecting with ~PT [32]. Finally, the last
line vanishes thanks to the cocycle condition: using Eq. (3)
it is rewritten as −ζωð ~Fþ−Þ, which is again zero. Since also
~PTC ¼ 0 holds, we conclude that the whole set of on-shell
equations for the DTD models is formally equivalent to
those of a PCM, provided the proper ~A is used. We can
furthermore write the Lax pair as

L� ¼ 1

2
ð1þ z∓2ÞAd−1f ð ~A� þ J�Þ ð11Þ

with z a spectral parameter. In fact, the flatness condition
∂þL− − ∂−Lþ þ ½Lþ; L−� ¼ 0 is equivalent to the on-shell
equations just derived.
Relation to Yang-Baxter models.—We now prove that

YB deformations for the PCM on the group G are
equivalent to DTD. This was checked for many particular
examples in Ref. [22]. YB models are identified by an R
matrix solving the CYBE on the Lie algebra g. If g ∈ G

SYB½g� ¼ −
1

2

Z
Tr

�
g−1∂þg

1

1 − ηRg
g−1∂−g

�
: ð12Þ

R is invertible on a certain subalgebra and its inverse is a
2-cocycle [21]. As anticipated, we identify R ¼ ω−1, where
ω is the operator defining the DTDmodel. Then, R: ~g� → ~g.
The two deformation parameters will be related by η ¼ ζ−1.
We first split the group element parametrizing the YB

model as g ¼ ~gf, where ~g ∈ ~G and f ∈ G. We identify f
with the homonym appearing on the DTD side. Our proof
of equivalence of the two actions will then consist in giving
the field redefinition relating ~g and ν. Since R is invertible,
we can always take ~g ¼ expðRXÞ for some X ∈ ~g�. One
can check that taking X ¼ ηνþ ðη2=2Þ ~PT ½Rν; ν� þOðη3Þ
the two actions are equivalent up to terms that are at least
cubic in η. The generalization to all orders can be obtained
by requiring that the dfdf terms in the two actions match.
This leads to the condition ð1 − ηR~gÞ−1 ¼ 1 − ~O−1 whose
solution can be shown to be

ν ¼ 1

η
~PT 1 − e−adRX

adRX
X ¼ 1

η
~PT

1 − Ad−1~g
logAd~g

ω log ~g: ð13Þ

It follows that dν ¼ ð ~PT − ~OÞ~g−1d~g or, equivalently,

A� ¼ Ad−1f ðJ� þ ~A�Þ; ð14Þ
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where we defined A� ¼ ð1� ηRgÞ−1ðg−1∂�gÞ on the YB
side. Using these relations it is not hard to check that the
two actions are the same up to the topological term
ζωð~g−1d~g; ~g−1d~gÞ, which has no effect in the classical
theory as remarked earlier.
We have proven the equivalence of the DTD and YB

models when ω is nondegenerate. In the case of a
degenerate ω it is always possible to choose it in such a
way that it is nondegenerate on a subalgebra ĝ ⊂ ~g [33] and
acts trivially on its complement ǧ in ~g, also an algebra
thanks to Eq. (3). We interpret it as NATD on ǧ of the YB
model corresponding to restricting ω to ĝ.
DTD of supercosets.—The construction of DTD models

for supercosets follows the steps explained in the simpler
case of the PCM. Here, we only present the main results,
whose derivation will be collected in Ref. [23].
We still denote by G the group of superisometries, e.g.,

PSUð2; 2j4Þ for superstrings on AdS5 × S5, see Ref. [34]
for a review. Its Lie superalgebra g admits a Z4 decom-
position, and we denote by PðjÞ the projectors onto the four
subspaces. They typically appear in the combination
d̂ ¼ Pð1Þ þ 2Pð2Þ − Pð3Þ or its transpose d̂T . The absence
of Pð0Þ in d̂ is necessary for the local gð0Þ invariance of the
action, i.e., local Lorentz transformations. The action for
DTD models of supercosets is [35]

S0½f;ν�

¼−
T
2

Z
StrðJþd̂fJ−þð∂þν− d̂Tf JþÞ ~O−1ð∂−νþ d̂fJ−ÞÞ;

ð15Þ

where d̂f ≡ Adfd̂Ad−1f . We keep the same definitions for J,
ν, which however now take values in superalgebras.
Moreover, now ~O ¼ ~PTðd̂f − adν − ζωÞ ~P.
The model is integrable since we can write down a Lax

pair. This is more conveniently expressed in terms of
A ¼ Ad−1f ð ~Aþ JÞ, where

~Aþ ¼ ~O−Tðþ∂þν − d̂Tf JþÞ;
~A− ¼ ~O−1ð−∂−ν − d̂fJ−Þ: ð16Þ

The flatness condition ∂þL− − ∂−Lþ þ ½Lþ;L−� ¼ 0 for

L� ¼ Að0Þ
� þ zAð1Þ

� þ z∓2Að2Þ
� þ z−1Að3Þ

� ð17Þ

is equivalent to the on-shell equations of the DTD model.
DTD models of supercosets possess kappa symmetry,

and therefore correspond to solutions of the generalized
supergravity equations of Refs. [36,37]. Kappa symmetry
transformations are δff−1 ¼ d̂Tf ðδνÞ ¼ ρ1;− þ ρ3;þ, where

ρj;� ¼ fiAdfκðjÞ; Jð2Þ� þ ~Að2Þ
� g ð18Þ

and κðjÞ, j ¼ 1, 3 are two local parameters of grading j. The
action (15) is invariant under these transformations upon
using the Virasoro constraints. If we were not fixing
conformal gauge, the variation of the action would be
compensated by the variation of the world sheet metric.
From these kappa symmetry transformations it is possible
to extract the background fields of DTD models [23].
The equivalence to YB models for invertible ω’s

holds also in the case of DTD models of supercosets.
Remarkably, the field redefinition is still given by Eq. (13)
as for the PCM. We have further verified that kappa
symmetry transformations of YB models [18] take the
above form under this field redefinition, when we fix the ~G
gauge to get δff−1 ¼ d̂Tf ðδνÞ.
Conclusions.—We provided a unified picture of (non-

Abelian) T duality and homogeneous YB deformations as
DTD of σ models. As pointed out in Ref. [22], an advantage
of this formulation is that it can be realized at the path
integral level, giving a better handle on the quantum theory.
In fact, it also explains why the condition for one-loop
Weyl invariance, i.e., unimodularity of ~g, is the same for
both the YB model and NATD [30,38,39].
Despite the close relation, it is still worth viewing the

DTD models as a distinct class of deformations. In fact, the
field redefinition that relates it to the YB model is singular
in the two undeformed limits; the YB model becomes
degenerate when taking the undeformed (i.e., ζ → 0) limit
of DTD models, and vice versa. Therefore, the interpreta-
tion as deformation applies to just one of the two models in
the T-dual pair. It would be interesting to understand if
there is any connection to the λ model of Refs. [31,40,41],
which is also a deformation of NATD and is related to the
inhomogeneous YB deformation [16–18].
Although our motivation was integrability, such defor-

mations can be applied also to nonintegrable models, which
provides an interesting and potentially useful way to
generate new supergravity solutions.
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