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We extend covert communication to the quantum regime by showing that covert quantum communication
is possible over optical channels with noise arising either from the environment or from the sender’s lab. In
particular, we show that sequences of qubits can be transmitted covertly by using both a single photon and a
coherent state encoding.We study the possibility of performing covert quantum key distribution (QKD) and
show that positive key rates and covertness can be achieved simultaneously. Covert communication requires
a secret key between the sender and receiver, which raises the problem of how this key can be regenerated
covertly. We show that covert QKD consumes more secret bits than it can generate and propose instead a
hybrid protocol for covert key regeneration that uses pseudorandom number generators (PRNGs) together
with covert QKD to regenerate secret keys. The security of the new key is guaranteed by QKD while the
security of the covert communication is at least as strong as the security of the PRNG.
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Alice wants to plan a surprise birthday party for Eve, but
this is challenging given Eve’s notorious eavesdropping
skills. Encrypting the invitations she sends to Bob, Charlie,
and the other guests may prevent Eve from knowing the
content of the messages, but this is not enough: the fact
alone that Alice is communicating with her friends will
make Eve suspicious, foiling any hopes of a surprise. What
Alice needs is a method of communication that is unde-
tectable by Eve: a method for covert communication.
As with other cryptographic tasks, techniques for covert

communication date back to ancient times, where messages
were hidden in seemingly innocuous objects such as the
scalp of travellers, whose hair would be shaved to reveal a
hidden message. Modern techniques include classical and
quantum steganography [1–3] and frequency hopping in
spread-spectrum radio transmissions [4]. Recently, several
schemes have been proposed where covert classical com-
munication is achieved by hiding information in the noise
of optical channels [5–8]. In particular, in Ref. [9], Bash
et al. showed that it is possible to covertly transmit classical
information over lossy bosonic channels with thermal
noise, even in the presence of a quantum adversary.
In this Letter, we extend covert communication to the

quantum regime by introducing practical protocols to
covertly transmit quantum information, using both single
photon and coherent state signals. We show that sequences
of qubits can be transmitted covertly in the presence of
noise originating from the environment or from the sender’s
lab, giving analytical security bounds for both cases. In the
model where noise originates from the lab, security can be
obtained even when Eve is given full control of the channel
connecting Alice and Bob. This is an improvement with
respect to previous work where Eve could not alter the
channel parameters. We then study covert quantum key

distribution (QKD) and show that positive key rates and
covertness can be achieved simultaneously.
All methods for covert communication require that the

parties share a random secret key. This is an important
difficulty, as the participants must ensure that they are not
detected when they do so and, once they consume the key,
they must find ways of covertly regenerating a new one.
This is the key regeneration problem in covert communi-
cation, which unfortunately has not been previously
addressed in the literature. In this work, we first show
that covert QKD protocols using sequences of qubits
consume more secret bits than they produce. We then
propose a hybrid approach to key regeneration in which
pseudorandom number generators (PRNGs) and covert
QKD can be combined to regenerate secret keys. The
security of the key is guaranteed by QKDwhile the security
of covert communication can be shown to be at least as
strong as the security of the PRNG.
Covert qubits.—Alice wants to transmit a sequence of

qubits to Bob in such a way that Eve cannot detect that they
are communicating. We assume that Alice is equally likely
to communicate or not, and Eve’s goal is to correctly
distinguish between these two scenarios. Eve’s detection
error probability Pe is given by Pe ¼ 1

2
ðPFA þ PMDÞ,

where PFA is the probability of a false alarm and PMD is
the probability of a missed detection. Alice and Bob’s goal
is to prevent Eve from performing better than a random
guess; i.e., they want that Pe ≥ 1

2
− ϵ for sufficiently small

ϵ > 0. We refer to ϵ as the detection bias.
We consider the case when Alice encodes a qubit state in

a single photon across two optical modes. For definiteness,
we assume that they correspond to the polarization degree
of freedom of a single time-bin mode, but this specification
is not required for our results. We further assume that they
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have access to N such time bins, each of which may be
used to send a qubit signal. Then, our protocol for covert
quantum communication is simple: for each of the N time
bins, Alice sends a qubit signal with probability q ≪ 1, and
with probability 1 − q, she does nothing. The only thing
that changes compared to a regular protocol is that signals
are not sent sequentially, but randomly spread out in time.
This is an advantage compared to previously proposed
protocols for covert classical communication, which are
more involved [9]. Alice sends on average Nq qubit signals
on time bins that are preagreed according to the secret key.
For Eve, who does not have the key, Alice sends a signal
with probability q for each time bin.
For our first noise model, we assume that Alice and Bob

are connected by a lossy bosonic channel with thermal
noise. This is modeled as a beam splitter with trans-
missivity η, where the input from the environment is a
thermal state ρn̄ with mean photon number n̄, as illustrated
in Fig. 1(a). As in previous work on covert communication
[5–9], we assume that Eve has access to all the photons that
do not reach Bob, but cannot otherwise change the channel
parameters.
This kind of noise model puts strong constraints on Eve’s

power, which is not the standard for quantum communi-
cation, where Eve is given full control over the channel. To
address this issue, we also consider a model where the noise
originates from Alice’s lab—which is inaccessible to Eve—
but give Eve full control over the channel connecting Alice
and Bob. This model is also illustrated in Fig. 1(b).
For either of the two models, to prove that our protocol

is secure, we only need to show that Eve cannot reliably
distinguish the 2N-mode state ρ that she receives when

Alice and Bob do not communicate from the state σ she
receives when they do communicate. The minimum error
probability of distinguishing these two states can be
bounded as [10]

Pe ≥
1

2
−
1

4
∥ρ − σ∥ ≥

1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8
Dðρ∥σÞ

r
; ð1Þ

where Dðρ∥σÞ ¼ Trðρ log ρÞ − Trðρ log σÞ is the relative
entropy.
If Alice and Bob do not communicate, the input to the

channel is the vacuum state for each polarization mode, and
Eve’s state is a thermal state. Therefore, Eve’s two-mode
state ρE is

ρE ¼ ρn̄0 ⊗ ρn̄0 ; ð2Þ

where n̄0 ¼ ηn̄ in the first model and n̄0 ¼ ð1 − ηÞn̄ in the
second model. On the other hand, when Alice and Bob
communicate, Eve’s two-mode state is

σE ¼ ð1 − qÞρE þ qρs; ð3Þ

where, as before, ρE is Eve’s state when there is no signal
and ρs is her state when Alice sends a qubit signal,
which can be calculated for both of our models (see the
Supplemental Material [11]). Since Alice and Bob inde-
pendently choose whether to send a signal or not for each
time bin, Eve’s 2N-mode states ρ and σ are tensor product
states of the form ρ ¼ ðρEÞ⊗N , σ ¼ ðσEÞ⊗N .
From Eq. (1), the detection bias ϵ can be bounded in

terms of the relative entropy between these states as

ϵ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8
Dðρ∥σÞ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
8
DðρE∥σEÞ

r
;

where we have used the fact that the relative entropy is
additive for tensor product states.
In general, Alice may send different qubit states in her

signals, each of which would lead to a different state for
Eve. In such cases, we can bound the detection bias by
considering only the worst case among all signal states

ϵ ≤ max
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
8
DðρE∥σE;iÞ

r
; ð4Þ

where σE;i is Eve’s state when Alice sends the ith state.
Thus, from now on we simply assume that σE corresponds
to the worst-case signal.
For given values of the parameters N, n̄, η, and q, we

can use Eq. (4) to bound ϵ and quantify the security of the
protocol. However, we are also interested in analytical
bounds that showcase the role of these parameters explic-
itly. We assume that Alice and Bob want to send an average
of d qubit signals, which fixes N and q to satisfy Nq ¼ d.

FIG. 1. Two noise models for covert communication. In panel
(a), Alice and Bob are connected by a lossy bosonic channel with
thermal noise, which is modeled as a beam splitter with trans-
missivity η, where the input from the environment is a thermal
state ρn̄ with mean photon number n̄. In panel (b), the thermal
noise comes from Alice’s lab. In both cases, Eve has no control
over the parameters inside the red boxes.
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For both of our models, we can upper bound the relative
entropy through a Taylor series expansion, keeping only
terms to second order in q. We then introduce an additional
bound over values of the transmissivity η, which notably
leads to the same bound for both our models (see the
Supplemental Material [11]). The resulting bound on the
detection bias is

ϵ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dn̄2

8ð1þ n̄Þ3 þ
1þ 4n̄þ 5n̄2 þ 3n̄3

16n̄ð1þ n̄Þ3
d2

N

s
: ð5Þ

In the regime where n̄ ≪ 1 and q > n̄2, we can approxi-
mate this bound as

ϵ≲ d
4

ffiffiffiffiffiffiffi
1

n̄N

r
; ð6Þ

which gives us a 1=
ffiffiffiffi
N

p
scaling of the detection bias as a

function of the number of time bins N in this regime.
From this expression we can also deduce a 1=

ffiffiffiffi
N

p
scaling

for the number of covert qubits d that can be transmitted
for fixed ϵ. Furthermore, the mean photon number n̄
places a limit to how small the detection bias can be,
since the upper bound can never be smaller thanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½dn̄2=8ð1þ n̄Þ3�

p
≈

ffiffiffiffiffiffiffiffi
d=8

p
n̄.

Covert communication with coherent states.—Although
the polarization of a single photon defines a qubit, in
practical implementations, it is usually more convenient to
use coherent states. Instead of a single-photon qubit state
jψi ¼ λ1j1iH þ λ2j1iV , where j1iH and j1iV correspond to
a single photon in the horizontal and vertical polarization
modes, respectively, we employ the state

jα;ψi ¼ jαλ1iH ⊗ jαλ2iV; ð7Þ

where jαj2 ¼ μ is the total mean photon number [12].
Notice that in this case we have a product state of both
polarization modes.
We require that the average number of photons received

by Bob when using coherent states is the same as in the
single photon case. This means that if q is the probability of
selecting a time bin in the single photon case and q0 is the
corresponding probability in the coherent state case, we
must have q ¼ μq0.
As before, we define σE to be Eve’s state when Alice and

Bob send a worst-case signal, which can be straightfor-
wardly computed (see the Supplemental Material [11]). We
can bound the detection bias as in Eq. (4), with a further
bound on the relative entropy by using a Taylor series
expansion to second order in q and μ, while also bounding
over values of η (see the Supplemental Material [11]). This
leads to the expression

ϵ ≤
��

n̄2ð1þ 2n̄Þ
μð1þ n̄Þ4 þ n̄

ð1þ n̄Þ2 þ
n̄μ

3ð1þ n̄Þ2
�
d
8

þ
�
n̄ð1þ 2n̄Þ þ 2n̄
2μ2ð1þ n̄Þ4 þ 1þ 7n̄þ 16n̄2 þ 12n̄3

2n̄ð1þ n̄Þ3
�

d2

8N

�1
2

:

For n̄ ≪ 1 and μ ≪ 1 with μ ≫ n̄, we can approximate this
bound as

ϵ≲
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

16Nn̄
þ dn̄

8

r
; ð8Þ

which also gives us a 1=
ffiffiffiffi
N

p
scaling for the detection bias.

Figure 2 illustrates the behavior of the detection bias
when Alice and Bob use single-photon and coherent-state
signals in the model where noise comes from Alice’s lab.
The square-root scaling of the detection bias can be clearly
seen in both cases for a certain range of values of N.
Overall, both implementations behave similarly and for the
values considered, can achieve a detection bias below 2%.
Covert QKD.—Based on these results, we study the

possibility of performing covert QKD. Two issues must
be addressed. The first is the possibility of keeping the
classical postprocessing covert, which can be carried out
using existing protocols for covert classical communication
[9]. Most QKD protocols require two-way classical com-
munication, which can be achieved in our first model since
the situation is symmetric for both Alice and Bob, while for
the second model, it requires Bob to also have a source of
noise in his lab.
Second, we need to prove that Bob can actually use the

weak signals sent by Alice. To do this, we show that, on the
channel with parameters that guarantee low detection bias
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FIG. 2. Log-log plot of the upper bound of Eq. (4) as a function
of the number of time bins N. We consider the model where noise
comes from Alice’s lab. The black curve corresponds to the single
photon protocol and the dashed red curve to the coherent state
protocol. Both curves overlap almost perfectly. We have set
d ¼ 20, η ¼ 0.5, and n̄ ¼ 10−5, as would be the case for a
thermal state at temperature 300 K and an infrared wavelength
of 4.2 μm. The mean photon number used in the coherent state
case is μ ¼ 10−3.
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ϵ, Alice and Bob would have a positive key rate even if all
the errors were attributed to Eve. For definiteness, we focus
on the BB84 protocol with both a single photon and
coherent state implementation. The asymptotic key rates,
with optimal error correction, are, respectively, [13]

KS ¼ R½1 − 2hðQÞ�; ð9Þ

KC ¼ R½Y1(1 − hðQ=Y1Þ) − hðQÞ�; ð10Þ

where hð·Þ is the binary entropy, R is the total detection
rate, Q is the quantum bit error rate, Y1 ¼
maxð0; 1 − μ=2τÞ, and τ is the total transmissivity. In
general, Eve has control over the error rate so she can
always prevent Alice and Bob from establishing a key.
What we need to show is that they can achieve positive key
rates despite the presence of the noise that is required for
covert communication. This will occur if the resulting error
rates Q, arising solely from the noise, are sufficiently low.
In the model where noise comes from the lab and in

the absence of additional experimental imperfections, the
error rates due to noise in the single photon and coherent
state case, respectively, satisfy (see the Supplemental
Material [11])

QS ≈
�
1

η
− 1

�
n̄; QC ≈

�
1

η
− 1

�
n̄
μ
: ð11Þ

In the single photon case, the key rate of Eq. (9) is positive
as long as QS < 0.11, which can be easily achieved
whenever n̄ ≪ 1. Similarly, in the coherent state case,
positive key rates can be obtained if μ ≤ τ and QC ≪ 1,
which occurs whenever n̄ ≪ μ. Thus, we can have positive
key rates for covert QKD even in the presence of noise.
In order to also achieve a small detection bias, we must
simply set a sufficiently large number of time bins N. From
Eqs. (6) and (8), this requires setting N ≫ d2=n in both the
single photon and the coherent state case.
For the values used in Fig. 2, which are n̄ ¼ 10−5, μ ¼

10−3, and η ¼ 0.5, we can obtain key rates of KS ¼ 0.99R,
and KC ¼ 0.47R for transmissivity t ¼ μ, while still
achieving a detection bias smaller than 2% for N ∼ 1010

time bins. This shows that it is possible to simultaneously
achieve nonzero key rates and a low detection bias in covert
QKD. For other quantum communication protocols, it
should also suffice to set n̄ ≪ 1 in the single photon case
and n̄ ≪ μ in the coherent state case, since these conditions
imply a large signal to noise ratio for the receiver.
As we argue in the next section, an application of covert

QKD is that it allows Alice and Bob to regenerate the secret
strings that are required for covert communication.
Secret key regeneration.—Ideally, we would like to run a

covert QKD protocol that generates more secret bits than it
consumes. However, this is not possible to achieve with
QKD protocols that use a sequence of qubits as signals. In a

covert QKD protocol, Alice independently sends a signal
with probability q for each of the N available time bins. In
the limit of large N, the average amount of shared bits
needed to specify the selected time bins is NhðqÞ, where
hð·Þ is the binary entropy. On the other hand, at best, Alice
and Bob only obtain an average of d ¼ Nq secret bits from
running the covert QKD protocol, without including the
overhead required by parameter estimation and error
correction. Since hðqÞ > q for q < 1

2
, it follows necessarily

that such a protocol for covert QKD consumes more secret
bits than it can produce. We are thus forced to look for
alternatives. We propose instead a hybrid key regeneration
method, where Alice and Bob obtain computational secu-
rity for the covert communication by using pseudorandom
number generators to decide for which time bins they send
their signals, while retaining information-theoretic security
of the regenerated secret key.
PRNGs take a truly random key as input and expand it

into an exponentially larger pseudorandom output. The
PRNG is secure if this output cannot be distinguished from
a truly random string. Since the pseudorandom output is
much larger than the seed, it can now be used to perform
large amounts of covert QKD, thus generating a new secret
key larger than the original key that was used as input,
allowing an indefinite amount of key regeneration [14]. The
security of the QKD protocol is unchanged during covert
communication, so the new key will have information-
theoretic security. On the other hand, the security of the
covert communication can be shown to be at least as strong
as the security of the underlying PRNG.
To see this, assume that Eve can break the security of the

covert communication protocol implemented with a PRNG
output, but she cannot if it is implemented with a truly
random string. Then, Eve has the power to break the security
of the PRNG too. Indeed, provided with the alleged random
string, she could simply run the covert communication
protocol herself: if she cannot break its security, the string
must be truly random and if she can, the string must be
pseudorandom. By contrapositive, this implies that if Eve
cannot break the security of the PRNG, in particular she
cannot break the security of a covert communication pro-
tocol that uses a PRNG output instead of true randomness.
Thus, the security of covert communication is at least as
strong as the security of the PRNG.
Discussion.—We have given simple methods to perform

covert quantum communication over noisy optical chan-
nels. In the case of QKD, we have shown that small
detection biases and positive key rates can be obtained
simultaneously. For implementations, it will be crucial to
choose optimal wavelengths that lead to significant noise
that is still low enough for Bob to reliably detect the signals.
We note that in principle any type of optical noise can be
used, not just thermal noise. It will also be important to
determine the conditions under which the large running
times required for covert QKD will be manageable in a
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practical setting. Although in this work we have focused on
QKD, it will be interesting to apply our techniques for
covert quantum communication to other protocols.
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