
Comment on “Large Enhancement in High-Energy
Photoionization of Fe XVII and Missing Continuum
Plasma Opacity”

Recent R-matrix calculations claim to produce a signifi-
cant enhancement in the opacity of neonlike Fe XVII due to
atomic core excitations [1] and assert that this enhancement
is consistent with recent measurements of higher-than-
predicted iron opacities [2]. This Comment shows that the
standard opacity models [3–7] which have already been
directly compared with experimental data [2,7] produce
photon absorption cross sections for Fe XVII that are
effectively equivalent to the R-matrix opacities reported
in [1]. Thus, the new R-matrix results cannot be expected to
significantly impact the existing discrepancies between
theory and experiment because they produce neither a
“large enhancement” nor account for “missing continuum
plasma opacity” relative to standard models.
All models that satisfy the f-sum rule [7] and include

the same initial and final electronic configurations can be
expected to produce similar opacities (e.g.,[8]). This is
demonstrated in Fig. 1, which compares calculated opac-
ities for Fe XVII from five standard models to the R-matrix
and opacity project (OP) results from [1]. The models have
been restricted to the Fe XVII ion and normalized to a
0.195 abundance but are otherwise the same as those
previously published [2,7]. Both R-matrix and standard
models include spectral features associated with autoioniz-
ing states and inner-shell electrons that are evident in
measured data but neglected in OP [1,9]. Thus the opacity
enhancements of R-matrix over OP reported in [1] illustrate
the deficiencies of OP rather than the merits of R-matrix.

Table I gives relative opacities for Fe XVII to help
quantify the similarities between R-matrix and standard
models and their mutual differences with measurements.
Both R-matrix and standard models yield larger total
Rosseland mean opacities than OP, confirming the impor-
tance of transitions missing in OP. However, the Rosseland
weighting function peaks near 17 Å while the most
profound discrepancies between theory and experiment
are in the 7–9 Å monochromatic continuum range. Here,
the average opacities from all models (as well as cold
reference opacities [10] representing photoionization from
a fully occupied L shell) are significantly smaller than the
experimental data. In this critical range, R-matrix is smaller
even than OP. Thus the results reported in [1] appear
unlikely to resolve this discrepancy between theory and
experiments.
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FIG. 1. (Adapted from Fig. 5 of Ref. [1].) Opacities of FeXVII
at a temperature of 2.1 × 106 K, free electron number density of
3.1 × 1022 cm−3, and abundance of 0.195. Dashed lines are
0.195× the cold reference opacity [10], representing a fully
occupied L shell.

TABLE I. Rosseland mean opacities κR of Fe XVII normalized
to the OP value demonstrate that both R-matrix and standard
models are significantly larger than OP. Average Fe XVII
opacities hκi in the 7–9 Å continuum region normalized to
experimental data [2] show deficits in all models.

Source
κR (total) relative

to OP [1]
hκi (7–9 Å) relative
to experiment [2]

OP [1] 1.00 0.59*

R-matrix [1] 1.35 0.52*

ATOMIC [3] 1.32 0.60
OPAS [4] 1.55 0.62
SCO-RCG [5] 1.37 0.65
SCRAM [6] 1.27 0.68
TOPAZ [7] 1.21 0.62
Cold [10] 0.74
Experiment [2] 1.00
*Estimated from Fig. 5 of Ref. [1].
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