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Contrary to previous two-band model studies which find increasing temperature would induce a
topological phase transition, we show here through first-principles calculations that the opposite is also
realizable, depending on the material’s full band structure and symmetry of the electron-phonon coupling
potential. This finding explains recent experimental results by Wojek et al. [Nat. Commun. 6, 8463 (2015)].
We show that the topological phase diagram of BiTlðS1−δSeδÞ2 as a function of doping and temperature
contains two distinct regions with nontrivial topology. In BiTlS2, the phonons promote the topological
phase at high temperature, while in BiTlSe2, the system is driven back into the trivial phase.
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Recent studies on three-dimensional topological insula-
tors have identified several materials with tunable topo-
logical phases [1]. Upon varying experimental parameters,
these materials undergo a phase transition between a trivial
and a topological insulator state. Such transition may occur
as a function of impurity doping [2–5], pressure [6–8], or
temperature [4,9–12]. The effect of temperature becomes
especially important for devices that are expected to operate
under varying conditions [13]. It is thus desirable to be able
to predict the topological phase diagrams of these materials
and their physical origin.
Electron-phonon interactions underlie the temperature-

induced topological phase transition. As more phonons
are being thermally activated, the electronic band energies
may shift and close the band gap until a band inversion
occurs at some critical temperature. This process was first
described in 2D and 3D topological insulators from model
Hamiltonians [14–18]. First-principles calculations later
confirmed that lattice deformation due to phonons could
flip the Z2 invariant [19,20].
One remarkable prediction from Garate et al. [14,15] was

that electron-phonon coupling could induce a trivial to
topological phase transition with increasing temperature.
The requirement for this scenario to happen is negative
temperature coefficients for the band edge states in the trivial
phase, which promotes a band inversion at high temperature
and stabilizes the topological phase. They proposed that
such a phenomenon could be seen in BiTlðS1−δSeδÞ2, due to
the presence of light atoms and the tunability of the band gap
with doping. While no temperature-dependent measure-
ments have been reported in this particular material, those
performed in Pb1−δSnδSe indicate the opposite trend—that
the system goes back from a topological to a trivial phase at
higher temperature [4,10,11].
In this Letter, we compute from first-principles

the topological phase diagram of BiTlðS1−δSeδÞ2. The

electron-phonon coupling and the temperature dependence
of the electronic band energies is obtained from density
functional perturbation theory (DFPT) [22–25], and we
simulate doping with a linear mixing scheme. We show that
the electron-phonon interaction causes a topological tran-
sition in the studied material, and indeed promotes the
topological phase in BiTlS2. However, this feature depends
on the doping content. The opposite trend is predicted in
BiTlSe2, that is, the topological phase is suppressed at high
temperature. We explain both behaviors by the symmetry of
the phonon coupling potential, which was not considered in
previous studies based on model Hamiltonians.
Theory and methodology.—As a result of the electron-

phonon coupling, the electronic energies acquire a temper-
ature dependence given by

εknðTÞ ¼ ε0kn þ
X

ν

Z
dq
ΩBZ

Σep
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where k and n label the wave vector and band index of an
electronic state, q and ν label the wave vector and branch
index of a phonon mode, and ΩBZ is the volume of the
Brillouin zone. In this expression, the electron-phonon
coupling self-energy has been decomposed into the indi-
vidual phonon modes’ contributions. As we made use of
the adiabatic approximation, all the temperature depend-
ence of the electronic energies comes from the Bose-
Einstein distribution of the occupations of the phonon
modes nqνðTÞ, and the 1

2
factor in Eq. (1) accounts for the

zero-point renormalization. In the static theory of Allen,
Heine, and Cardona [26–28], the contribution of a phonon
mode to the self-energy is
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where gknn0 ðq; νÞ are the electron-phonon coupling matrix
elements and η is a small positive real number. The first and
second terms of Eq. (2) are called the Fan and Debye-
Waller term, respectively.
In most semiconductors and insulators, the self-energy is

positive for the last occupied band (i.e., reducing the hole
energy) and negative for the first unoccupied band
(i.e., reducing the quasielectron energy). The band gap,
therefore, closes with increasing temperature. The rationale
behind this behavior is that, for a large band gap semi-
conductor, the top of the valence band would be repelled by
the nearby occupied states with lower energies, while the
bottom of the conduction band would be repelled by the
nearby unoccupied states with higher energies. In the case
of a topological insulator, the small band gap allows for a
phonon-mediated interaction between the occupied and the
unoccupied bands (since they are close in energy), and one
has to give more consideration to anticipate the sign of the
self-energy corrections.
Depending on the sign of the electron-phonon coupling

induced self-energy in Eq. (2), two possible scenarios can
occur with profound implications on the stability of the
topological phase. In one case, the self-energy would cause
the band gap of a trivial insulator to close with increasing
temperature, until a band inversion occurs, and the system
reaches a topological phase at some critical temperature. At
higher temperature, the inverted gap would further increase,
thus stabilizing the topological phase. In the converse
scenario, a system that is a topological insulator at low
temperature could have its band gap shrink at higher temper-
ature until the bands are reinverted and the system reaches a
trivial phase.We show here that which one of these scenarios
occurs depends on the details of the system under consid-
eration; it could even be reversed as the doping changes.
The method to compute phonon-related properties using

DFPT is well established [29]. Besides providing the
thermodynamic properties of solids, it has been success-
fully applied to the temperature dependence of electronic
band structures [30–35]. In this work, we employ a
linearized scheme to interpolate the phonon-related quan-
tities at intermediate doping between two reference crystal
structures.
The crux of the DFPT method for the electron-phonon

coupling is the self-consistent calculation of the potential
created by moving the atoms of the crystal in a periodic but
noncommensurate unit amplitude displacement with wave
vector q:

Vκjðq; rÞ ¼
X

l

eiq·Rl
∂VSCFðrÞ
∂τlκj ; ð3Þ

where l labels a unit cell with lattice vector Rl, κ labels an
atom within the unit cell, j labels a Cartesian direction, and
τ is the position of an atom. From this periodic perturbation
potential and the corresponding perturbed density, one

evaluates the dynamical matrix, defined as the second-
order derivative of the total energy with respect to unit
displacements of two atoms. Its Fourier transform at wave
vector q is given by

Φjj0
κκ0 ðqÞ ¼

X

l

eiq·Rl
∂2E

∂τlκj∂τ0κ0j0 : ð4Þ

The equation for the phonon modes with energies ωqν and
polarization vectors ξνκj is then

Mκω
2
qνξ
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κjðqÞ ¼

X

κ0j0
Φjj0

κκ0 ðqÞξνκ0j0 ðqÞ; ð5Þ

where Mκ is the atomic mass.
Once the phonon modes and the perturbation potential

are known, the electron-phonon self-energy can be con-
structed. Defining an electron-phonon squared coupling
matrix as

Ωκj;κ0j0
knn0 ðqÞ ¼ hknjV�

κjðq; rÞjkþ qn0i
× hkþ qn0jVκ0j0 ðq; rÞjkni; ð6Þ

we may write the squared electron-phonon coupling matrix
elements as
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and their Debye-Waller counterpart as
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We perform electronic structure and DFPT calculations
on the reference systems BiTlS2 and BiTlSe2. To simulate
a doping δ resulting in the stoechiometric formula
BiTlðS1−δSeδÞ2, we mix a quantity A computed in
BiTlS2 and BiTlSe2 according to

A½BiTlðS1−δSeδÞ2� ¼ ð1 − δÞA½BiTlS2� þ δA½BiTlSe2�:
ð9Þ

The quantities A being mixed are the dynamical matrix Φ,
the atomic masses M, the electron-phonon squared cou-
pling matrix Ω and the eigenvalues ε. In doing so, we keep
track of the parity eigenvalue of the electronic states at Γ.
The electronic quantities (Ω, ε) are thus mixed between
states with the same parity. This linear mixing scheme
offers a simple procedure to treat intermediate doping.
It ignores, however, the effect of disorder on the electronic
structure and vibrational properties.
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In this work, we retain only the electron-phonon coupling
contribution to the self-energy, and we neglect the effect
of thermal expansion of the lattice. While the change of
the volume as a function of doping is taken into account, the
temperature dependence of the eigenvalues at a given doping
is computed for a fixed-volume experiment. Our DFT
and DFPT calculations [36] were performed with ABINIT

[37] using ONCV pseudopotentials [38] and a revised PBE
functional [39]. The choice of this exchange-correlation
functional is motivated by the correct description of the
material’s band structure. A more accurate description of the
electronic structure and the electron-phonon coupling
strength would have to rely on GW calculations [32,35,
40,41]. However, the exchange-correlation functional
chosen in this work yields the correct band gap and band
topology for the materials under consideration, while
allowing for the use of the DFPT method to obtain the
lattice dynamics and the electron-phonon coupling. We,
therefore, expect the electron-phonon coupling strength
computed with this functional to be reasonably accurate.
Results and discussion.—The crystal structure of BiTlS2

and BiTlSe2 is a close-packed stacking of hexagonal planes
whose unit cell contains a single formula unit [42], as
shown in Fig. 1. We obtained the lattice parameters by
minimizing the internal stress, and relaxed the atomic
coordinates until vanishing forces remained on the atoms.
The resulting lattice parameters [43] are slightly overesti-
mated compared to experiments [3].
The band structures of BiTlS2 and BiTlSe2 are quite

similar in energy, but a distinct topology of the bands is
revealed by the angular momentum decomposition of the
electronic states, as shown in Fig. 2. The p states around
thallium are always associated with a negative parity, since
this atom is an inversion center of the crystal and is taken as
the origin in our calculations. The p states around bismuth
indicate a negative parity for the wave functions at Γ and F,
and a positive parity at L and Z, since the application
of inversion symmetry translates this atom into another
primitive cell. In BiTlS2, the characters of the last valence

band and the first conduction band evolve smoothly
through the Brillouin zone, resulting in a trivial phase with
Z2 ¼ 0. In BiTlSe2, the characters of these bands invert
at Γ, resulting in a topological phase with Z2 ¼ 1.
Figure 3 shows the temperature dependence of the

valence bands maximum (VBM) and the conduction
bands minimum (CBM) for various intermediate doping
between BiTlS2 and BiTlSe2. By tracking the critical
temperature as a function of doping, we obtain the
corresponding topological phase diagram, shown in
Fig. 4. In BiTlS2 and for low doping (δ≲ 0.3), the band
gap closes as a function of temperature, promoting the
topological phase above the critical temperature. At
intermediate doping, the electron-phonon coupling self-
energy terms change sign but the system remains in the
trivial state. The band gap now increases with temperature
and no topological phase is found. Above the critical
doping (δ ≈ 0.55) up to BiTlSe2, the VBM and the CBM
are inverted, and again the inverted band gap closes with
temperature. The system is driven back into the trivial
phase above the critical temperature.

FIG. 1. Crystal structure of BiTlS2 or BiTlSe2, showing the
conventional unit cell (left) and the primitive unit cell (right).

FIG. 2. Band structures of BiTlS2 (top) and BiTlSe2 (bottom).
The size of the colored discs is proportional to the projection of
the electronic wave functions onto various angular momenta
around the atoms.
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The sign flip of the self-energy terms can be understood
in terms of intraband and interband scattering processes
of the bands nearest to the band gap. These are the terms
with the smallest energy denominators in the Fan self-
energy—the first term of Eq. (2)—making the dominant
contributions to the eigenvalues renormalization. In the
intraband scattering, the VBM (CBM) couples to another
state in the same band with lower (higher) energy, and this
process closes the band gap. Conversely, in the interband
scattering, the VBM (CBM) couples to a state in the first
conduction band (last valence band), and this process
opens the band gap. The strongest intraband and interband
interactions happen in the neighborhood of the Γ and F
points in k space, where the band gap reaches local minima.
The relative strength of interband and intraband

interactions stems from the symmetry of the coupling
potential. Rewrite the electron-phonon coupling elements
as gknn0 ðq; νÞ ¼ hkþ qn0jVqνðrÞjkni with the phonon
potential

VqνðrÞ ¼
X

κj

Vκjðq; rÞξνκjðqÞ: ð10Þ

Because of the inversion symmetry, the position τκ of
an atom κ is related to the position of its inversion partner
−κ in the same unit cell by −τκ ¼ τ−κ þ Iκ, where Iκ is a
lattice vector. The consequence for the phonon polarization
vectors is that inversion partners are related by

ξν−κjðqÞ ¼ −λqνeiq·Iκ ξν�κjðqÞ; ð11Þ

with λqν ¼ �1 defining the parity of the phonon vector.
At time-reversal invariant momenta, the phonon potentials
are parity eigenfunctions with

VqνðrÞ ¼ λqνVqνð−rÞ: ð12Þ

Therefore, a phonon with odd parity (λqν ¼ −1) can only
couple electronic states with opposite parities, and a

phonon with even parity (λqν ¼ þ1) can only couple
electronic states with the same parity.
Since the parity of the bands is unchanged between Γ and

F, we can make the following statement about the phonon
modes at these points. In both BiTlS2 and BiTlSe2, the even
phonon modes will promote the topological phase, and
the odd phonon modes will promote the trivial phase.
Furthermore, we note that at Γ and F, the even phonon
modes are those where the pair of S or Se atoms move in
opposite directions, while the Bi and Tl atoms do not move.
As the sulfur atoms are being substituted for the heavier
selenium atoms, the coupling with even phonon modes
decreases, and the odd phonon modes dominate. Therefore,
the system transitions from a regime where the topological
phase is promoted at high temperature to a regime where
the trivial phase is promoted instead.
In summary, we observed, from first-principles calcu-

lations, a temperature-induced band inversion occuring
in BiTlðS1−δSeδÞ2, and we computed the corresponding

FIG. 3. Temperature dependence of the top of the valence bands and the bottom of the conduction bands for different doping between
BiTlS2 and BiTlSe2.

FIG. 4. Topological phase diagram of BiTlðS1−δSeδÞ2 as a
function of the doping parameter (δ) and temperature. The blue
shaded region indicates the topological phase.
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topological phase diagram in doping and temperature space.
The nontrivial phase exists under two different regimes.
In BiTlS2 and for low doping, the topological phase is
promoted above the critical temperature from a low-
temperature trivial phase; in BiTlSe2 and for high doping,
the topological phase is observedonly at low temperature and
is suppressed above the critical temperature. Experimentally,
nontrivial topological phases have been observed only at
low temperatures so far. Our analysis indicates, however, that
any topological insulator material containing light atoms
forming inversion pairs could exhibit a topological phase
that is promoted with temperature.

G. Antonius acknowledges fruitful discussions with Ion
Garate and Kush Saha. This research was supported by the
National Science Foundation under Grant No. DMR-
1508412, which provided for basic theory and formalism,
and by the Center for Computational Study of Excited-
State Phenomena in Energy Materials funded by the U.S.
Department of Energy, Office of Basic Energy Sciences,
under Contract No. DE-AC02-05CH11231 at Lawrence
Berkeley National Laboratory, which provided for algo-
rithm and code developments and simulations. The com-
putational resources were provided by the National Energy
Research Scientific Computing Center (NERSC), a DOE
Office of Science User Facility supported by the Office of
Science of the U.S. Department of Energy under Contract
No. DE- AC02-05CH11231, and the Extreme Science and
Engineering Discovery Environment (XSEDE), which is
supported by National Science Foundation Grant No. 787
ACI-1053575.

*antonius@lbl.gov
[1] M. Z. Hasan, S.-Y. Xu, and G. Bian, Phys. Scr. T164,

014001 (2015).
[2] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava,

and M. Z. Hasan, Nature (London) 452, 970 (2008).
[3] S.-Y. Xu, Y. Xia, L. A. Wray, S. Jia, F. Meier, J. H. Dil, J.

Osterwalder, B. Slomski, A. Bansil, H. Lin, R. J. Cava, and
M. Z. Hasan, Science 332, 560 (2011).

[4] P. Dziawa, B. J. Kowalski, K. Dybko, R. Buczko, A.
Szczerbakow, M. Szot, E. Łusakowska, T. Balasubramanian,
B.M.Wojek,M. H.Berntsen,O. Tjernberg, and T. Story,Nat.
Mater. 11, 1023 (2012).

[5] S.-Y. Xu et al., Nat. Phys. 8, 616 (2012).
[6] X. Xi, C. Ma, Z. Liu, Z. Chen, W. Ku, H. Berger, C. Martin,

D. B. Tanner, and G. L. Carr, Phys. Rev. Lett. 111, 155701
(2013).

[7] M. Bahramy, B.-J. Yang, R. Arita, and N. Nagaosa, Nat.
Commun. 3, 679 (2012).

[8] S.-s. Li, W.-x. Ji, C.-w. Zhang, P. Li, and P.-j. Wang,
J. Mater. Chem. 4, 2243 (2016).

[9] A. A. Reijnders, Y. Tian, L. J. Sandilands, G. Pohl, I. D.
Kivlichan, S. Y. Frank Zhao, S. Jia, M. E. Charles, R. J.
Cava, N. Alidoust, S. Xu, M. Neupane, M. Z. Hasan,

X. Wang, S. W. Cheong, and K. S. Burch, Phys. Rev. B
89, 075138 (2014).

[10] B. M. Wojek, P. Dziawa, B. J. Kowalski, A. Szczerbakow,
A. M. Black-Schaffer, M. H. Berntsen, T. Balasubramanian,
T. Story, and O. Tjernberg, Phys. Rev. B 90, 161202
(2014).

[11] B. M. Wojek, M. H. Berntsen, V. Jonsson, A. Szczerbakow,
P. Dziawa, B. J. Kowalski, T. Story, and O. Tjernberg, Nat.
Commun. 6, 8463 (2015).

[12] Y. Zhang et al., arXiv:1602.03576.
[13] H. Zhu, C. A. Richter, E. Zhao, J. E. Bonevich, W. A.

Kimes, H.-J. Jang, H. Yuan, H. Li, A. Arab, O. Kirillov,
J. E. Maslar, D. E. Ioannou, and Q. Li, Sci. Rep. 3, 1757
(2013).

[14] I. Garate, Phys. Rev. Lett. 110, 046402 (2013).
[15] K. Saha and I. Garate, Phys. Rev. B 89, 205103 (2014).
[16] Z. Li and J. P. Carbotte, Phys. Rev. B 88, 195133

(2013).
[17] Z. Li and J. P. Carbotte, Eur. Phys. J. B 88, 87

(2015).
[18] T. Yoshida, R. Peters, and N. Kawakami, Phys. Rev. B 93,

045138 (2016).
[19] J. Kim and S.-H. Jhi, Phys. Rev. B 92, 125142 (2015).
[20] B. Monserrat and D. Vanderbilt also reported first-principles

topological phase diagram calculations in the Bi2Se3 family
compounds, as a function of pressure and temperature [21].

[21] B. Monserrat and D. Vanderbilt, arXiv:1608.00584 [Phys.
Rev. Lett. (to be published)].

[22] S. Baroni, S. de Gironcoli, A. D Corso, and P. Giannozzi,
Rev. Mod. Phys. 73, 515 (2001).

[23] S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58,
1861 (1987).

[24] X. Gonze, Phys. Rev. B 55, 10337 (1997).
[25] X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).
[26] P. B. Allen and V. Heine, J. Phys. C 9, 2305 (1976).
[27] P. B. Allen and M. Cardona, Phys. Rev. B 23, 1495

(1981).
[28] P. B. Allen and M. Cardona, Phys. Rev. B 27, 4760

(1983).
[29] F. Giustino, arXiv:1603.06965 [Rev. Mod. Phys. (to be

published)].
[30] A. Marini, Phys. Rev. Lett. 101, 106405 (2008).
[31] F. Giustino, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett.

105, 265501 (2010).
[32] G. Antonius, S. Poncé, P. Boulanger, M. Côté, and X.

Gonze, Phys. Rev. Lett. 112, 215501 (2014).
[33] S. Poncé, G. Antonius, Y. Gillet, P. Boulanger, J. L. Janssen,

A. Marini, M. Côté, and X. Gonze, Phys. Rev. B 90, 214304
(2014).

[34] G. Antonius, S. Poncé, E. Lantagne-Hurtubise, G. Auclair,
X. Gonze, and M. Côté, Phys. Rev. B 92, 085137 (2015).

[35] B. Monserrat, Phys. Rev. B 93, 100301 (2016).
[36] The ground state calculation is performed with an 8 × 8 × 8

k-point grid and a kinetic energy cutoff of 50 Ha. The
phonon wave vector sampling for the DFPT calculation is
performed with an 8 × 8 × 8 q-point grid for the full
Brillouin zone, while the central region of the Brillouin
zone is sampled with a 32 × 32 × 32 q-point grid.

[37] X. Gonze et al., Comput. Phys. Commun. 180, 2582 (2009).
[38] D. R. Hamann, Phys. Rev. B 88, 085117 (2013).

PRL 117, 246401 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

9 DECEMBER 2016

246401-5

http://dx.doi.org/10.1088/0031-8949/2015/T164/014001
http://dx.doi.org/10.1088/0031-8949/2015/T164/014001
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1126/science.1201607
http://dx.doi.org/10.1038/nmat3449
http://dx.doi.org/10.1038/nmat3449
http://dx.doi.org/10.1038/nphys2351
http://dx.doi.org/10.1103/PhysRevLett.111.155701
http://dx.doi.org/10.1103/PhysRevLett.111.155701
http://dx.doi.org/10.1038/ncomms1679
http://dx.doi.org/10.1038/ncomms1679
http://dx.doi.org/10.1039/C6TC00020G
http://dx.doi.org/10.1103/PhysRevB.89.075138
http://dx.doi.org/10.1103/PhysRevB.89.075138
http://dx.doi.org/10.1103/PhysRevB.90.161202
http://dx.doi.org/10.1103/PhysRevB.90.161202
http://dx.doi.org/10.1038/ncomms9463
http://dx.doi.org/10.1038/ncomms9463
http://arXiv.org/abs/1602.03576
http://dx.doi.org/10.1038/srep01757
http://dx.doi.org/10.1038/srep01757
http://dx.doi.org/10.1103/PhysRevLett.110.046402
http://dx.doi.org/10.1103/PhysRevB.89.205103
http://dx.doi.org/10.1103/PhysRevB.88.195133
http://dx.doi.org/10.1103/PhysRevB.88.195133
http://dx.doi.org/10.1140/epjb/e2015-60010-1
http://dx.doi.org/10.1140/epjb/e2015-60010-1
http://dx.doi.org/10.1103/PhysRevB.93.045138
http://dx.doi.org/10.1103/PhysRevB.93.045138
http://dx.doi.org/10.1103/PhysRevB.92.125142
http://arXiv.org/abs/1608.00584
http://arXiv.org/abs/1608.00584
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/PhysRevLett.58.1861
http://dx.doi.org/10.1103/PhysRevLett.58.1861
http://dx.doi.org/10.1103/PhysRevB.55.10337
http://dx.doi.org/10.1103/PhysRevB.55.10355
http://dx.doi.org/10.1088/0022-3719/9/12/013
http://dx.doi.org/10.1103/PhysRevB.23.1495
http://dx.doi.org/10.1103/PhysRevB.23.1495
http://dx.doi.org/10.1103/PhysRevB.27.4760
http://dx.doi.org/10.1103/PhysRevB.27.4760
http://arXiv.org/abs/1603.06965
http://arXiv.org/abs/1603.06965
http://dx.doi.org/10.1103/PhysRevLett.101.106405
http://dx.doi.org/10.1103/PhysRevLett.105.265501
http://dx.doi.org/10.1103/PhysRevLett.105.265501
http://dx.doi.org/10.1103/PhysRevLett.112.215501
http://dx.doi.org/10.1103/PhysRevB.90.214304
http://dx.doi.org/10.1103/PhysRevB.90.214304
http://dx.doi.org/10.1103/PhysRevB.92.085137
http://dx.doi.org/10.1103/PhysRevB.93.100301
http://dx.doi.org/10.1016/j.cpc.2009.07.007
http://dx.doi.org/10.1103/PhysRevB.88.085117


[39] Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
[40] I. Aguilera, C. Friedrich, and S. Blügel, Phys. Rev. B 88,

165136 (2013).
[41] I. Aguilera, C. Friedrich, G. Bihlmayer, and S. Blügel, Phys.

Rev. B 88, 045206 (2013).
[42] S. V. Eremeev, G. Bihlmayer, M. Vergniory, Y. M. Koroteev,

T. V. Menshikova, J. Henk, A. Ernst, and E. V. Chulkov,
Phys. Rev. B 83, 205129 (2011).

[43] The lattice parameters were optimized until the internal
stress was below 10−8 Ha=bohr3, giving a ¼ 4.207 and

c ¼ 22.492 Å for BiTlS2, and a ¼ 4.372 and c ¼ 23.058 Å
for BiTlSe2, which are slightly overestimated compared
to experiments (a ¼ 4.1, c ¼ 21.9 Å for BiTlS2, and
a ¼ 4.255, c ¼ 22.307 Å for BiTlSe2) [3]. The only in-
ternal degree of freedom, u, is the relative height of the
lowest sulfur or selenium atom. We relaxed the atomic
coordinates until the forces on the atoms were below
10−7 Ha=bohr, giving u ¼ 0.237 for BiTlS2, and u ¼ 0.239
for BiTlSe2.

PRL 117, 246401 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

9 DECEMBER 2016

246401-6

http://dx.doi.org/10.1103/PhysRevLett.80.890
http://dx.doi.org/10.1103/PhysRevB.88.165136
http://dx.doi.org/10.1103/PhysRevB.88.165136
http://dx.doi.org/10.1103/PhysRevB.88.045206
http://dx.doi.org/10.1103/PhysRevB.88.045206
http://dx.doi.org/10.1103/PhysRevB.83.205129

