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We show how strong light-mediated resonant dipole-dipole interactions between atoms can be utilized
in a control and storage of light. The method is based on a high-fidelity preparation of a collective
atomic excitation in a single correlated subradiant eigenmode in a lattice. We demonstrate how a simple
phenomenological model captures the qualitative features of the dynamics and sharp transmission
resonances that may find applications in sensing.
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Resonant emitters play a key role in optical devices for
classical and quantum technologies. Atoms have particular
advantages because of an excellent isolation from environ-
mental noise with well-specified resonance frequencies and
no absorption due to nonradiative losses. At high densities,
however, they exhibit strong light-mediated resonant dipole-
dipole (DD) interactions that can lead to uncontrolled and
unwanted phenomena, such as resonance broadening, shifts,
and dephasing. According to common wisdom, these are
considered as a design limitation in quantum and classical
light technologies, e.g., in quantummetrology [1,2], sensing
[3], information processing [4], in the storage of light, and
in the implementations of quantum memories [5–8]. DD
interactions also receive significant attention, e.g., in
Rydberg gases [9–13]. Here, we show how strong radiative
interactions can be harnessed in engineering long living
collective excitations that open up avenues for utilizing
resonant DD interactions in the control and storage of light,
and in sensing. Our protocol is based on controlled prepa-
ration of large, many-atom subradiant excitations, where the
light-mediated interactions between the atoms strongly
suppress radiative losses.
Superradiance [14], where the emission of light is

coherently enhanced in an ensemble of emitters has con-
tinued to attract considerable interest [15] with the recent
experiments focusing on light in confined geometries [16],
weak excitation regime [17–19], and the related shifts of the
resonance frequencies [20–24]. Its counterpart, subradiance,
describes coherently suppressed emission due to a weak
coupling to the radiative vacuum. Because of the weak
coupling, subradiant states are challenging to excite and
have experimentally proved elusive. In atomic and molecu-
lar systems subradiance has been observed in pairs of
trapped ions [25] and molecules [26], as well as in weakly
bound ultracold molecular states [27,28]. In a large atom
cloud, a subradiant decay was recently observed in the long
tails of a radiative decay distribution [29] that indicated a
small fraction of the atoms exhibiting a suppressed emission.
In our model, an incident light excites a collective atomic

state that exhibits a significant radiative vacuum coupling.

The excitation is then transferred to a radiatively isolated
cooperative state. The cold atoms that store the light
excitation are confined in a planar lattice, providing a
protection against nonradiative losses, which typically are a
common hindrance to observation of subradiance. The state
transfer is achieved by rotating the collective atomic
polarization by an effective magnetic field. Depending
on the size of the lattice and the confinement of the atoms,
we find substantially suppressed radiative emission where
up to 98%–99% of the total excitation is transferred into a
single subradiant eigenmode of the interacting multiatom
system. The correlated multiatom excitation spatially
extends over the entire lattice and is, therefore, fundamen-
tally different from two-atom subradiant states [25,27,28].
We develop a simple phenomenological two-mode model
that provides an intuitive description of the light storage
dynamics, and qualitatively captures the essential features,
e.g., of the Fano resonance of the forward-scattered light.
We consider a tightly-confined square planar array of

atoms (e.g., a 2D optical lattice) with one atom per site
(Fig. 1). The light-induced radiative DD interactions lead to
collective behavior of the atoms in the lattice that is
dramatically different from the response of an individual,
isolated atom [30–34]. The atoms are either at fixed
positions or we address the position fluctuations using the
model of a finite optical lattice with the potential depth sER
in the units of the lattice photon recoil energy ER [35,36]. In
the numerics, the lattice spacing a ¼ 0.55λ, except when
specified otherwise. Whenever we consider a finite lattice
depth,we take the confinement normal to the lattice≃0.12a.
The atoms are illuminated by an incident weak-intensity
laser with the amplitude EðrÞ ¼ E0ðy; zÞêy expðikxÞ, with
polarization êy and E0ðy; zÞ either constant or a Gaussian
profile on the yz plane. Here, and in the rest of the paper, all
the field amplitudes and the atomic polarization correspond
to the slowly varying positive frequency components with
oscillations at the laser frequency ω. We consider a near-
resonance J ¼ 0 → J0 ¼ 1 atomic transition (e.g., Yb, Sr)
and assume a controllable Zeeman level splitting of the
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J0 ¼ 1 manifold. The Zeeman shifts could be induced by
magnetic fields or, e.g., by ac Stark shifts [48].
In the numerical simulations we calculate the optical

response by evaluating all the multiple scattering events
[49,50] between the atoms in an array. In the limit of low
light intensity, for stationary atoms the results are exact
[37,51], and we also include the vacuum fluctuations of the
atomic positions in the lowest vibrational level of each
lattice site [30]. This is done by stochastically sampling the
atomic positions at each site in each realization according to
the density distribution and then ensemble averaging the
results. At each stochastic run we have the N atoms fixed at

positions rj, and we calculate the dipole moment dj ¼
D
P

σêσP
ðjÞ
σ for each atom j, where D denotes the reduced

dipole matrix element. Each atom has three polarization

amplitude componentsPðjÞ
σ associated with the unit circular

polarization vectors ê�1 ¼∓ ðêx � iêyÞ=
ffiffiffi
2

p
and ê0 ¼ êz,

that are coupled with the transitions jJ ¼ 0; m ¼ 0i →
jJ0 ¼ 1; m ¼ σi.
In the limit of low light intensity, the excited state

population of the atoms vanishes and the excitation
amplitudes satisfy [30,37]

d
dt

PðjÞ
σ ¼ ðiΔσ − γÞPðjÞ

σ þ i
ξ

D
ê�σ · ϵ0EextðrjÞ; ð1Þ

where ξ ¼ 6πγ=k3 and the single-atom Wigner-Weisskopf
linewidth γ ¼ D2k3=ð6πℏϵ0Þ. The detuning from the
atomic resonance Δσ ¼ ω − ωσ ¼ ω − ðω0 þ σδzσÞ where
ω0 is the resonance frequency of the jJ ¼ 0i ↔ jJ0 ¼
1; m ¼ 0i transition and �δz� are the shifts of the m ¼ �1

levels (Fig. 1). Each amplitude in Eq. (1) is driven by the
sum of the incident field and the fields scattered from all

the other N − 1 atoms EextðrjÞ ¼ EðrjÞ þ
P

l≠jE
ðlÞ
S ðrjÞ.

The scattered dipole radiation field from the atom l is

ϵ0E
ðlÞ
S ðrÞ ¼ Gðr − rlÞD

P
σ êσP

ðlÞ
σ , where G is the dipole

radiation kernel, such that EðlÞ
S ðrÞ represents the electric

field at r from a dipole D
P

σêσP
ðlÞ
σ residing at rl [52].

We first consider a single, isolated atom. This is obtained
in Eq. (1) by setting EextðrjÞ → EðrjÞ. The y-polarized

light then drives the atomic polarization components PðjÞ
�1

(Fig. 1). Here we instead write the equations of motion in

the Cartesian basis dj=D ¼ êxP
ðjÞ
x þ êyP

ðjÞ
y þ êzP

ðjÞ
z , such

that PðjÞ
x ¼ ðPðjÞ

−1 − PðjÞ
þ1Þ=

ffiffiffi
2

p
and PðjÞ

y ¼ −iðPðjÞ
−1 þ PðjÞ

þ1Þ=ffiffiffi
2

p
. We obtain

_PðjÞ
x ¼ ðiΔ0 − i~δ − γÞPðjÞ

x − δ̄PðjÞ
y ; ð2Þ

_PðjÞ
y ¼ ðiΔ0 − i~δ − γÞPðjÞ

y þ δ̄PðjÞ
x þ iξϵ0E0=D; ð3Þ

where ~δ ¼ ðδzþ − δz−Þ=2, δ̄ ¼ ðδzþ þ δz−Þ=2, and Δ0 denotes
the detuning of the m ¼ 0 state. The incident light directly

drives only PðjÞ
y , but the energy splitting of the levels jm ¼

�1i introduces a coupling between PðjÞ
x and PðjÞ

y . Although

the incident field is perpendicular to PðjÞ
x , the light can

therefore still excite PðjÞ
x by first driving PðjÞ

y . The J ¼
0 → J0 ¼ 1 transition is isotropic when the excited-state
energies are degenerate and any orientation of the orthogo-

nal basis also forms an eigenbasis. For δ̄ ≠ 0, PðjÞ
x=y no

longer are eigenstates. The dipoles are consequently turned
toward the x axis by the rotation around the effective
magnetic field.
For the entire interacting many-body system we numeri-

cally calculate the optical response for different Zeeman
shifts and lattice heights and show in Fig. 2(a) the dynamics

of the total polarization of the system jPtotj ¼
jPj;kP

ðjÞ
k êkj=N [in all the numerical results, the polari-

zation amplitudes are expressed in the dimensionless form
P → DPk3=ð6πϵ0E0Þ]. The incident light excites the y
components of the atomic dipoles. Analogously to the
single atom case, the Zeeman shifts turn the polarization
density toward the x direction. At the resonance [36]
ðδzþ; δz−;Δ0Þ ¼ ð1.1; 1.1; 0.65Þγ we find the dipoles almost
entirely along the x direction [53]. After the evolution has
reached the steady state, the Zeeman shifts and the incident
laser are turned off, resulting in a decay of the excitations.
We fit the exponential functions to the decay profiles to
obtain numerical estimates for the collective radiative
linewidths that we later compare with the collective
eigenvalues. For δz� ¼ 0, the dipoles are in the lattice plane
and the radiative decay rate 0.79γ is close to the single atom
linewidth. However, for ðδzþ; δz−;Δ0Þ ¼ ð1.1; 1.1; 0.65Þγ we

FIG. 1. Schematic illustration and numerically calculated re-
sponse. The atoms (one per site) are confined in a small square
2D 8 × 8 array on the yz plane. The linearly polarized (along y)
incident light propagates along the positive x direction driving the
jJ ¼ 0; mJ ¼ 0i → jJ0 ¼ 1; mJ ¼ �1i transitions. The arrows
represent the numerically calculated steady state atomic dipoles
at each site. A real or synthetic magnetic field along the z axis
induces Zeeman shifts, effectively rotating the dipoles around the
z axis. For ðδzþ; δz−Þ ¼ ð0.1; 0.3Þγ (left panel) this rotation is
small, but for ðδzþ; δz−Þ ¼ ð0.45; 1.75Þγ (driven at the resonance of
the subradiant mode; right panel), the dipoles are oriented
approximately normal to the lattice, representing a collective
excitation eigenmode with a factor of 50 narrowed linewidth.
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find strongly suppressed decay of 0.14γ, indicating that the
entire collective radiative excitation is dominated by
subradiance. This is very different from the observation
of long tails of radiative decay where only an extremely
small fraction of the total excitation exhibits enhanced
lifetime [29].
The lattice confinement affects the subradiant decay

[Fig. 2(b)] and for more strongly fluctuating atomic
positions we obtain faster decay rates with 0.18γ and
0.28γ for s ¼ 20 and s ¼ 5, respectively. For the case of
fixed atomic positions a better fit is obtained by a double
exponential (reflecting the occupation of eigenmodes with
different linewidths, as explained later) b1e−c1t þ b2e−c2t,
with b1 ≃ 0.72, c1 ≃ 0.0032γ, b2 ≃ 0.24, c2 ≃ 0.027γ.
The decay is dominated by an exponent that is about
300 times smaller than the one for a single atom.
Owing to the resonant DD interactions the atoms

respond collectively to light, exhibiting collective excita-
tion eigenmodes with distinct collective radiative line-
widths and line shifts. We can qualitatively understand
the response by analyzing the behavior of the most
dominant modes. The incident light is phase-matched to
a smoothly varying, phase-coherent excitation of the atoms.
The linear polarization couples to a collective (“coherent
in-plane”) mode in which all the dipoles are coherently
oscillating along the y direction with the excitation PI , a
collective eigenmode of the system in the absence of the
Zeeman shifts. Since all the dipoles in this mode are in the
lattice plane, PI is responsible for strong reflection and
transmission of light. For nonzero Zeeman shifts the mode
no longer is an eigenmode, but as in the single atom case,
the polarization of the atoms is then turned toward the x

axis. This reorientation can be qualitatively analyzed by a
simple two-mode model when we assume that PI is
predominantly coupled with a phase-coherent collective
(“coherent perpendicular”) excitation PP where all the
atomic dipoles are oscillating in phase, normal to the plane
[36]. Also this mode is a collective eigenmode for δz� ¼ 0.
We can now establish an effective two-mode dynamics [36]

_PP ¼ ðiΔP − i~δ − υPÞPP − δ̄PI; ð4aÞ
_PI ¼ ðiΔI − i~δ − υIÞPI þ δ̄PP þ iξϵ0E0=D; ð4bÞ

where υP=I are the collective linewidths of the correspond-
ing eigenmodes of the many-atom system (for δz� ¼ 0) and
ΔP=I ¼ ω − ωP=I ¼ Δ0 þ δP=I are the detunings of the
incident light from the resonances of these modes (that
are shifted by δP=I).
The excitation PP dominantly radiates within the plane,

enhancing interactions between the atoms: for light to
escape, it generally undergoes many scattering events, so
that the collective mode becomes strongly subradiant. After
the excitation is driven into PP, we set E0 ¼ δ̄ ¼ 0, and the
decay becomes slow. The light can be released by applying
a fast π-Rabi-pulse using δ̄ ≠ 0 that transfers the excitation
back to PI .
We also calculate the eigenmodes when δz� ¼ 0 for the

full interacting system of atoms and light, and analyze the
occupations of the different eigenmodes in the steady-state
responses of Fig. 2(b) (at γt ¼ 20). We use the occupation
measure Lj ¼ jvTj bj2=

P
ijvTi bj2 for the eigenvector vj in the

state b. The resonance linewidths are then compared with
the calculated decay rates of Fig. 2(b). We find that the
steady-state excitation of the δz� ¼ 0 fixed atomic position
case is dominated by the collective PI excitation eigen-
mode with about 50% of the total excitation [36]. Its
linewidth υI ≃ 0.79γ almost perfectly matches with the
fitted decay rate 0.80γ in Fig. 2(b). For the ðδzþ; δz−;Δ0Þ ¼
ð1.1; 1.1; 0.65Þγ fixed atomic position case the fitting of
the radiative decay to a double exponential in Fig. 2(b)
provided a much better result. This slowly decaying case is
dominated by the subradiant PP excitation eigenmode with
about 70% of the total excitation [36]. The linewidth υP ≃
3.1 × 10−3γ indicates a strongly subradiant excitation and
again, very closely matches with the dominant exponent
3.2 × 10−3γ of the decay in Fig. 2(b). The reason for the
double-exponential decay in Fig. 2(b) is a prominent
excitation ∼15% of an additional eigenmode whose line-
width ≃0.015γ notably differs from that of PP.
Although the subradiant eigenmode with υP ≃ 3.1 ×

10−3γ has a uniform phase profile, its amplitude is smaller
close to the lattice edges [36]. This suggests that even a
more targeted excitation of this mode can be achieved using
a focused Gaussian laser beam. Indeed, a Gaussian beam
with the standard deviation 6a increases the occupation
to 98% of the total excitation [36]. The corresponding

(a) (b)

FIG. 2. The dynamics of the total atomic polarization density
in the lattice of 20 × 20 sites for different Zeeman shifts and
lattice heights. (a) Curves from slow to fast decay:
ðδzþ; δz−;Δ0Þ ¼ ð0; 0; 0Þ, ð0.4; 0.6; 0Þγ, and ð1.1; 1.1; 0.65Þγ
(s ¼ 50). At γt ¼ 20 (when each curve is normalized to one),
the Zeeman shifts and the incident light are switched off. When
the dipoles are oriented close to the x axis (see Fig. 1 on right), the
decay is slow (collective subradiance). For δz� ¼ 0 the dipoles are
pointing along the y axis and decay rapidly. An exponential
fitting provides decay rates 0.79γ, 0.16γ, and 0.14γ. (b) The
curves from top: incident Gaussian beam with fixed atomic
positions, plane-wave excitation for fixed atomic positions, for
lattice with s ¼ 50, 20, 5, [ðδzþ; δz−;Δ0Þ ¼ ð1.1; 1.1; 0.65Þγ], and
for fixed atomic positions (δz� ¼ Δ0 ¼ 0). The shaded lines
around the curves represent the stochastic uncertainties of the
excitation amplitudes due to the vacuum fluctuations of the
atomic positions.
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dynamics provides an excellent fit to a single exponential
with a decay rate of 3.1 × 10−3γ.
The many-body nature of the light-mediated interactions

manifests itself in a strong dependence of the suppressed
decay on the size of the system. In Fig. 3(b) we show the
linewidth υP as a function of the atom number N. For fixed
atomic positions the mode becomes increasingly more
subradiant in larger lattices with υP=γ ≃ N−0.91. The
fluctuations of the atomic positions suppress the linewidth
narrowing and, e.g., s ¼ 50 has the large array limit
υP ≃ 0.15γ. Using tight confinement in the Lamb-Dicke
regime lj ≪ a, e.g., by optical tweezers, can significantly
increase the lifetime of the subradiant state in large systems.
By varying the lattice spacing for different atom numbers

we find that υP has a minimum around a=λ ¼ 0.7–0.8
[Fig. 3(a)]. Around the minimum υP is also the most
subradiant linewidth of the system. The engineered exci-
tations have particularly narrow linewidths for far red
detuned optical lattices for which a=λ≳ 0.55.
The narrow linewidth υP manifests itself also in the

resonance of the scattered light (Fig. 4). We display the
spectrum of the steady state response of the forward-
scattered light into a narrow cone of j sin θj≲ 0.1. The full
numerical simulation is comparedwith the two-modemodel
of Eqs. (4) that qualitatively captures themain features of the
spectra, indicating that the resonance behavior is dominated
by the two collective modes. The spectra exhibit a Fano
resonance due to a destructive interference between different
scattering paths that involve either the excitationPI only, or
a scattering viaPP, as inPI → PP → PI . One can see from
Eqs. (4) [36] that the forward or back scattered light is
suppressed when δ̄2 ≫ υPυI and that the resonances corre-
spond to high (low) occupations of PP (PI) excitations. In
the limit that PP is not strongly driven, the narrow spectral
resonance is a direct consequence of its subradiant linewidth
in a large lattice (the resonances strongly depend on
the lattice size; Fig. 4), and the interference is analogous
to the interference of bright and dark modes in the

electromagnetically-induced transparency (EIT) [38]. If
PP is strongly excited by the Zeeman shifts, the resonance
notably broadens and its width can be approximated by
½ðυ2I þ 4δ̄2Þ1=2 − υI�=2 (for υP=δ̄≃ 0) [36]. In the limit of a
large lattice the optical response varies between a full
transmission (PP resonance) and complete reflection
(δ̄ ¼ 0) [36]. Narrow transmission resonances due to col-
lective radiative interference may also be achieved in
magnetodielectric solid-state resonator systems [39], and
EIT in an optical lattice has been proposed [32].
In conclusion, we showed that collective light-atom

interactions can be harnessed for a controlled preparation
of a single, spatially-extended, multiatom subradiant exci-
tation eigenmode, storing the incident light. The possibility
to engineer optical interactions may be promising, e.g., for
the control of many-atom light shifts in lattice clocks [1,2],
and our subradiant state exhibits suppressed shifts [36].
Moreover, the narrow resonance features are very sensitive
to the Zeeman shifts and could also provide a detection
mechanism of weak magnetic fields [36]. Unlike in a
magnetometry using EIT [40] in weakly interacting vapors,
the width of the resonance here is not limited by the single
atom linewidth, but by the much narrower collective sub-
radiant linewidth, resulting, e.g., in a sharp dispersion at the
transmission resonance (Fig. 4) and a large group delay.
The data presented in this Letter can be found at [54].
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