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We experimentally study particle exchange in a dissipative double-well potential using laser-cooled
atoms in a hybrid trap. We measure the particle hopping rate as a function of barrier height, temperature,
and atom number. Single-particle resolution allows us to measure rates over more than 4 orders of
magnitude and distinguish the effects of loss and hopping. Deviations from the Arrhenius-law scaling at
high barrier heights occur due to cold collisions between atoms within a well. By driving the system
periodically, we characterize the phenomenon of stochastic resonance in the system response.
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A classical particle confined in a dissipative double-well
potential is a simple conceptual model that has, nonethe-
less, proved to be a powerful theoretical and experimental
tool. In physical chemistry, for example, this model serves
as the basis for much of reaction rate theory, as exemplified
by the Kramers rate [1–4]. Here, a few basic parameters
including the barrier height, the particle temperature, and
the relevant trapping frequencies in one dimension are
sufficient to understand the thermally driven transition rate.
The same double-well model is the starting point for the
theory of stochastic resonance, in which a system subject to
a weak driving field exhibits a peak in its response as a
function of the temperature [5].
Beyond its interest as a model system, a system of

particles in a double-well potential can be a useful exper-
imental tool. A particle in either well occupies a metastable
state, and transitions between those states are driven by rare
energetic processes. Whereas an ensemble measurement of
an observable such as, for example, kinetic energy, will
include only a negligible contribution from these rare events,
an experiment that detects hopping events across a barrier is
sensitive only to the high-energy tail of the energy distri-
bution. This provides a background-free window into rare
events that, nonetheless, dominate particle dynamics on
longer time scales. Given suitable control and site-resolved
particle detection, one can study these processes as a
function of experimental parameters such as barrier height,
temperature, and particle density. Such a systematic study
can reveal the origin of these energetic processes and is
essential for understanding the dynamics of the trapped
particles.
Here, we realize a dissipative double-well system of cold

trapped atoms and study the particle exchange rates and their
underlyingmechanisms over a range of experimental param-
eters. We produce the double-well potential by superimpos-
ing a magneto-optical trap (MOT) with a blue-detuned sheet
of light. The latter is produced by a Gaussian laser beamwith
a large aspect ratio (6 × 400 μm2), creating a near uniform

potential barrier through the MOT volume (rMOT∼35μm).
Under the effect of this barrier, one can observe a split MOT
with the two sides separated by a sharp boundary limited by
the optical resolution of the imaging system [Fig. 1(a)]. We
can precisely control the barrier height ΔV by varying the
power in the light sheet. In our system, laser cooling and
heating provide dissipation in away that allows for control of
the temperature T. Furthermore, the particle number can be
varied and precisely detected from the level of a single atom
to thousands. We use this control to study particle exchange
rates in different regimes dominated by both thermal and
collisional processes.
The number of atoms N1 and N2 in each corresponding

site is determined via fluorescence imaging. The scattered
photons are collected in an imaging system with a numeri-
cal aperture of 0.23 and imaged onto a low-noise
CCD camera. We have previously established a noise
model for atom counting, taking into account the contri-
butions of photon shot noise, fluorescence noise, and noise
due to atom loss [6,7] and found a single-atom resolution
limit for determining the atom number imbalance z ¼
ðN1 − N2Þ=ðN1 þ N2Þ at a total of 500 particles.
We use two different methods to measure the hopping

rates depending on the number of atoms. For mesoscopic
atom numbers, an initial imbalance z0 ∼�1 is prepared, and
the hopping rate r is deduced from the initial population
increase of the empty site given by _N1;2 ¼ rN2;1. An
example of this is shown in Fig. 1(b). After some time,
the atom number imbalance equilibrates, while the total
atom numberN ¼ N1 þ N2 decreases due to the slower trap
loss. If there are relatively few atoms in the trap, the hopping
rate can be measured by detecting the individual anticorre-
lated jumps in the fluorescence signal over time correspond-
ing to an atom leaving one well and entering the other. Here
we obtain r ¼ λ=hNit, where λ is the number of hopping
events during the time t, and hNi is the time average of the
total atom number. Example time traces shown in Fig. 1(c)
illustrate how the dynamics slow down with increasing
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potential barrier height. This method of measuring the
hopping rate is sensitive for very low rates, where a long
detection time is favorable. With an exposure time of
500 ms, we achieve a resolution as low as one event in
104 s, where we are ultimately limited by the feasible
observation period.
While the dependence of the rate onΔV is well described

by Arrhenius’s law, we see strong deviations from this
model at larger barrier heights. The simple Arrhenius rate is
obtained from a Gaussian velocity distribution T ðvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=2πkBT

p
expð−mv2=2kBTÞ for the thermal atomic

sample, where T is the temperature, m is the mass, and
kB is the Boltzmann constant. However, the presence of
light-assisted collisions will modify the wings of this
distribution at a level dependent on the number of trapped
atoms in each well. The energy gained by the process of
light-assisted collisions is exponentially distributed, which
can bemodeled by CðEÞ ¼ E−1

0 expð−E=E0Þwith an energy
scale E0 depending on the detuning of the light [8,9]. In our

experiment, E0=kB ¼ 3 mK describes dependence of the
hopping rate due to light-assisted collisions on the potential
barrier height for mean atom numbers of 2500 and 320
shown in Fig. 2. CðEÞ can be expressed as a velocity
distribution CðvÞ via E ¼ mv2=2, such that the combined
velocity distribution fðvÞ ¼ ð1 − εNÞT ðvÞ þ εNCðvÞ with
ε ¼ 1.2ð1Þ × 10−7 describes the hopping ratemeasurements
for large atom numbers N over the entire range of barrier
heights. Taking the example of N ¼ 320, although the
fraction of atoms in the higher-energy component is only
εN ¼ 3.8ð1Þ × 10−5, this component dominates the hop-
ping rate above a barrier height of ΔV ∼ 10kBT0, because
the thermal hopping is sufficiently suppressed.
For small atom numbers, we measure a hopping rate at

large barrier heights that is several orders of magnitude
higher than the thermal hopping rate and at least 1 order of
magnitude higher than the rate expected due to light-
assisted collisions. Furthermore, since we observe no
correlated loss events (i.e., events where two atoms are
lost simultaneously) at these barrier heights, we can reject
cold collisions as a cause of the observed loss. In general,
the increased hopping rate may be described by a further
modification of the thermal velocity distribution in addition
to the modification due to light-assisted collisions, an
anomalous diffusion rather than a Gaussian spatial diffu-
sion [10–16]. We have investigated other possible sources
of the observed hopping rate for small atom numbers,
including quantum tunneling and effects from an inhomo-
geneous potential barrier and find them to be insufficient to
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FIG. 2. The hopping rate dependence on small barrier heights is
given by the Kramers rate (dashed line). At large enough barrier
heights, the thermal activation is suppressed, and collisionally
activated hopping starts to dominate for large mean atom
numbers, such as 2500 (blue circles) and 320 (red diamonds).
Including the high-energy scale of light-assisted collisions in the
velocity distribution describes the scaling with atom number
(solid lines). For small atom numbers, however, the measured
hopping rate (black dots) is significantly higher than expected
from light-assisted collisions.
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FIG. 1. Hybrid optical trap and hopping rate measurements.
(a) The hopping rate r between the two sites of the dissipative
double-well potential depends on both the potential barrier height
ΔV and the temperature T. Fluorescence imaging with single-
atom resolution yields the individual atom number N1 and N2.
(b) An initial atom number imbalance equilibrates over time. For
large atom numbers, the initial slope is a measure for the rate of
light-assisted collisions. (c) Single-atom resolution allows the
precise identification of hopping events as the anticorrelated atom
number changes. Increasing the barrier height for a given
temperature reduces the hopping rate.
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account for our observation. Another source of this high-
energy tail in the distribution could be collisions with
background gas [17–19]. We measure an atom loss rate
from background gas collision of 1=ð250 sÞ. Our measured
hopping rate can be explained if we assume a fraction of
approximately 1=5 of the background collision events
leading to hopping rather than loss [20–29].
By adjusting the barrier height ΔV and temperature T,

we can operate in a regime where particle exchange is
dominated by thermal activation [20]. We have calibrated
the steady-state MOT temperature with a release-and-
recapture technique to be T0 ¼ 80 μK. The temperature
of the atomic ensemble can be increased by switching to a
blue detuning of þΓ, effectively heating the sample for a
short period of time compared to the cooling of the atoms
[see Fig. 3(a)]. The duty cycle d of blue detuning is given
by d ¼ τb=ðτb þ τrÞ, where τb ðτrÞ is the time of blue (red)
detuning. We find TðdÞ ¼ T0ð1 − ξdÞ−1, with ξ ¼ 3.6ð1Þ,
which allows for a maximum duty cycle of about 27%. We
explore the temperature dependence of the hopping rate for
an intermediate barrier height, i.e., in the thermal hopping
regime. Figure 3(b) shows an Arrhenius plot of logðrÞ
against the inverse temperature, confirming the exponential
scaling law in the hopping rate over 4 orders of magnitude.
This control over T and ΔV allows us to study the

phenomenon of stochastic resonance, whereby a weakly

driven system exhibits a maximum in its linear response as
a function of the temperature. Given an external modulation
of the system, the temperature can be tuned to match the
hopping rate r to the modulation frequency Ω ¼ 2π=TΩ,
where TΩ is the modulation period. A harmonic modulation
of the magnetic offset field of the MOT causes an
imbalance in the population of the two sites illustrated
in Fig. 4(a), which can be measured via the atom number
imbalance z. The linear system response to the modulation
can be written as hxðtÞi ¼ x̄ cosðΩt − ϕÞ, where x̄ is the
amplitude and ϕ the phase. When the time-scale matching
condition 2=r ¼ TΩ, or, equivalently, Ω ¼ πr is met, the
amplitude of the linear system response exhibits a maxi-
mum. This implies that added (thermal) noise can increase
the signal-to-noise ratio of an extracted signal [5].
The system response to a modulation of the harmonic

MOT potential is observed in the normalized atom number
difference z. We perform a nonuniform discrete Fourier
transform zðtÞ → ~zðνÞ and obtain the power spectral density
PðνÞ ∝ j~zðνÞj2 [20]. The peak strength of the frequency
component equal to the driving frequency Ω ¼ 2πν0 in the
linear response theory is given by Pðν0Þ ¼ ðπ=2Þx̄2ðTÞþ
PNðν0Þ, where PNðνÞ the background power spectral den-
sity, i.e., the noise in the system response in the absence of
driving. From this, we obtain the amplitude of the linear
response x̄ðTÞ ¼ A0hx2i0=kBT × 2rK=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2K þΩ2

p
, where

A0 is the driving amplitude and hx2i0 is the variance of the
unmodulated system (A0 ¼ 0) [5]. The resonance shape of
x̄ðTÞ is shown in Fig. 4(b).
The stochastic resonance effect can be interpreted as

tuning the noise level in order to obtain a maximum of the
signal-to-noise ratio, which can be defined as SNR ¼
2Pðν0Þ=PNðν0Þ. The factor of 2 reflects the property
PðνÞ ¼ Pð−νÞ. In leading order, the signal-to-noise ratio
can be expressed as SNR ¼ πrKðA0x0=kBTÞ2, independent
of the driving frequency Ω [30–32]. Like the linear
response amplitude, the signal-to-noise ratio exhibits a
maximum as a function of the system temperature shown in
Fig. 4(b). Although the peak of both measures occur at
similar temperatures, they do not necessarily coincide.
The phase of the linear response is given by ϕðTÞ ¼

arctan ðΩ=2rKÞ and vanishes for large noise intensities [33].
We confirm this by comparing the observed response phase
with the driving phase given by the magnetic offset field
modulation [see Fig. 4(b)]. In this higher-energy regime, the
atoms move over the barrier at a rate much higher than the
drive frequency. For lower temperatures, the response phase
saturates to an expected value of π=2.
If we extract the linear response from the centroid of the

atomic ensemble c ¼ P
ixi=N, rather than the atom number

imbalance z, we become sensitive to the intrawell response
of the atoms to the driving force [20,34,35]. This is caused
by a shift δxm ¼ xm − x0m between the unperturbed potential
minimum xm and theminimum x0m altered by the driving [see
the inset of Fig. 4(c)]. In this case, the response phase is
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FIG. 3. Temperature control and Arrhenius’s law. (a) The
temperature of the laser-cooled atomic ensemble can be varied
via the duty cycle of blue detuning, which can reach a maximum
of 27% (dashed line). (b) An Arrhenius plot of logðrÞ versus the
inverse temperature shows the expected linear dependence over 4
orders of magnitude.
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given by ϕðTÞ ¼ arctanðΩ=ω0ð2ω2
0rK þ Ω2DÞ=ð4ω0r2Kþ

Ω2DÞ, where D ∝ T is the noise intensity, and ω0 is the
MOT trapping frequency at the potentialminimum [36]. The
phase goes to ϕ ¼ arctanðΩ=ω0Þ for T → 0, independent of
the hopping rate, and sinceω0 ismuch larger than the driving
frequency, this constant value is very close to zero, as shown
in Fig. 4(c). We also observe the effects of intrawell motion
on the linear response amplitude, which, for T → 0, reduces
to a finite constant x̄ðTÞ ∝ A0hx2i0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þΩ2

p
[37].

In conclusion, we have observed thermal and collisional
processes in a dissipative double-well system with a high
degree of control over the relevant parameters. We have
measured transition rates between the two wells dominated
by at least three different processes. At low barrier heights,
the activation can be well described by Arrhenius’s law
describing thermal exchange for all atom numbers. At large
barrier heights, depending on the density of atoms in the
trap, light-assisted collisions lead to a small population at
significantly higher energies that can dominate the exchange
rate. At the highest barrier heights and low atom numbers, a
separate process has been shown to dominate, which we
have attributed to collisions with background gas. Our
understanding of these dynamics allows us to apply a set of
parameters where we observe the phenomenon of stochastic
resonance, for which the hybrid trap is a paradigm system.
Both the typical resonance shape of the linear response
amplitude and the phase are altered by the presence of
intrawell motion. In the future, an extension of our system to
a hybrid trap with multiple wells and individually adjustable
barrier heights could be used to study multidimensional
energy transport in a controlled dissipative system, which is
difficult to calculate theoretically, but experimentally acces-
sible as an extension of the double-well potential to a hybrid
optical lattice. We note also that our system of cold atoms
confined to two wells separated by a controllable barrier
realizes the setup of a classic Maxwell’s demon gedanken
experiment [38]. Further improvement of the atom imaging
efficiency may allow for a direct realization of this and other
foundational experiments.
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FIG. 4. Stochastic resonance. (a) The hopping rate r can be
tuned via the temperature to match the time scale TΩ ¼ 2π=Ω of
the external modulation of the system, resulting in a stochastic
resonance. (b) The linear response of the system extracted
from the atom number imbalance shows the resonance feature
in the amplitude as well as in the signal-to-noise ratio. The solid
lines are fitted varying the driving amplitude A0. The phase of the
linear response exhibits the expected shift for temperatures below
the resonance and approaches π=2 for vanishing thermal noise.
The insets show the linear response (black dots) relative to the
drive (green line). (c) Increasing the barrier height effectively
probes lower temperatures, where the effects of intrawell motion
are observed (solid lines), causing a deviation from the simple
stochastic resonance theory (dashed lines). Here, the linear
response is obtained from the motion of the atomic centroid.
Intrawell motion is induced by a shift δxm ¼ xm − x0m in the
potential minima.
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