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Mendoza-Coto, Stariolo, and Nicolao Reply: Rizzi
and Alves (RA) [1] argue that our results in [2] are not
sufficiently general to determine the nature of the isotropic-
nematic transition. Their main argument is a result from
simulations of the dipolar Ising model (DI) for a case where
lattice induced anisotropies are strong, showing a weak
first order phase transition instead of the Kosterlitz-
Thouless (KT) transition predicted for a coarse grained
dipolar model in our work. This corresponds to a > 2,
where we recover well-known results of Toner and Nelson
[3]. Since both, this well established theory for stripe
melting in two dimensions and our results, apply to strictly
isotropic systems, criticisms of RA are outside the scope of
our work.

In fact, while the model studied by us is defined on the
continuum and has a continuous O(2) rotational symmetry
(see Fig. 1), the DI model simulated by RA is defined on a
square lattice. Moreover, the DI is a discrete model and for
their choice of parameter 6 = 2, the equilibrium stripe
width is rwo lattice spacings [4]. Under these conditions
every spin comprises, on average, a sharp (Ising) domain
wall between stripes, and lattice effects are particularly
strong. This is clearly reflected in Fig. 1 of their comment,
where it can be seen that even in the disordered phase, the
modulations follow the principal directions of the lattice,
displaying a discrete Z(4) symmetry (“tetragonal liquid
state”). Because of this, there is no reason to expect that the
nature of the orientational transition in both models should
be the same. It is worth mentioning that experimental
realizations of the models considered here, namely ultrathin
ferromagnetic films with perpendicular anisotropy on planar
substrates, do not show any obvious lattice anisotropy
effects (see, e.g., [5,6]).

Apart from the aforementioned lattice induced phenom-
ena in the low-0 regime, the DI model should also be
distinguished from the continuous model in the low
temperature regime. Because of the discrete nature of
the DI, there is always a finite energy gap between the
stripe ground state and any elementary excitation, absent in
the continuous model. This implies the existence of a phase
with long range positional order (stripe phase) [4,7].
Evidence of this “crystal-like” phase can be seen on the
left side of the caloric curve shown by RA. On the other
side, this phase is absent in the continuous model, which at
most admits a quasi-long-range positionally ordered phase
at low temperatures, when anisotropies are taken into
account [8]. Thus, the physics of the continuous model
and that of the DI model cannot be considered equivalent at
low temperatures.

RA also criticize our simulation results, arguing that
the finite size analysis in [2] is inconclusive because of the
small system sizes simulated. Their results are limited to a
single system of 72% sites. We have reached systems of
7267 sites, showing a behavior consistent with our theo-
retical results over a considerable window of system
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FIG. 1. Typical stripe liquid phase configuration in a Langevin
simulation of the dipolar model with discretization mesh size
4622, Note the isotropic character of the pattern.

sizes (132 to 726 linear sizes), enough to discriminate
the different universality classes, for a <2 and a > 2.
Langevin simulations of the corresponding scalar field
theories are more suited for probing the continuous rota-
tional symmetry [9], as is evident from Fig. 1 when
compared to the tetragonal liquid state typical of the DI
model in the square lattice shown by RA.
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