
Comment on “Nature of Long-Range Order
in Stripe-Forming Systems with Long-Range
Repulsive Interactions”

In a recent Letter, Mendoza-Coto et al. [1] presented a
study focusing on the nature of phase transitions in two-
dimensional (2D) stripe-forming systems with competing
short-range attractive and long-range (1=rα) repulsive
interactions. In particular, they conclude that for dipolar
interactions (α ¼ 3), the isotropic-nematic phase transition
is in the Kosterlitz-Thouless (KT) universality class. The
authors support their findings by mapping an effective
Hamiltonian into models which behavior resembles the 2D
XY model at low temperatures [2], and a finite-size scaling
analysis from Langevin simulations. However, the validity
of their conclusion is hindered by the lack of numerical
evidence due to the relative small lattice sizes [3], and more
generally because a nonuniversal behavior is expected for
such 2D systems [4]. Aswe illustrate here, tiny lattice effects
are enough to alter the transition scenario completely.
Below we present a comparative analysis between the

microcanonical caloric curves βðEÞ obtained for the 2D
dipolar Ising model [5], which displays an isotropic-
nematic transition, and the 2D XY model [6], which shows
a KT transition. The Hamiltonians H2D

dip and H2D
XY are given

in terms of the parameters δ and J as in [5,6], respectively.
We evaluate βðEÞ via the statistical temperature-weighted
histogram analysis method (ST-WHAM) [7] from data
produced by Monte Carlo simulations with cluster updates
for the XY model and replica exchange method for the
dipolar Ising model.
Figure 1 clearly shows that caloric curves for the two

models exhibit distinct behaviors. While there are two
S-shaped curves in βðEÞ for the dipolar Ising model, a
monotonic decreasing behavior is observed for the XY
model. The two S-shaped curves in Fig. 1(a) corresponds to
two transitions that separates the isotropic phase (which is
stable for E=N≳−1.086 and temperatures T>1=βIN≃0.8),
the nematic phase (snapshot in the middle), and the striped
phase (which is stable for E=N≲−1.187 and T<1=βNS ≃
0.767, and displays ground-state configurations with 18
stripes for N ¼ 722). The S-shaped curves in βðEÞ are due
to the presence of first-order phase transitions [8]. The
results for the XY model in Fig. 1(b) shows the region near
the KT transition at T ¼ 1=βKT ≃ 0.893. Accordingly,
there is no signal of S-shaped curves in βðEÞ because
the KT transition is an infinite order transition [6].
In conclusion, our analysis indicates that the isotropic-

nematic transition in the dipolar Ising model is a first-order
phase transition instead of a KT transition. By considering
this example and the expected nonuniversality, we argue
that both mapping and numerical results in [1] are insuffi-
cient to determine the nature of isotropic-nematic transition
in 2D systems with competing short-range and dipolar
interactions.
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FIG. 1. Caloric curves βðEÞ vs energy per spin E=N. (a) dipolar
Ising model for δ ¼ 2, where a nematic phase is observed [5].
Horizontal lines denote transition temperatures obtained by
Maxwell’s construction. From left to right: configurations in
the striped, nematic, and isotropic phases, respectively. (b) XY
model for J ¼ 1 at the KT transition.
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