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The Belitz-Kirkpatrick-Vojta (BKV) theory shows in excellent agreement with experiment that
ferromagnetic quantum phase transitions (QPTs) in clean metals are generally first order due to the
coupling of the magnetization to electronic soft modes, in contrast to the classical analogue that is an
archetypical second-order phase transition. For disordered metals the BKV theory predicts that the second-
order nature of the QPT is restored because the electronic soft modes change their nature from ballistic to
diffusive. Our low-temperature magnetization study identifies the ferromagnetic QPT in the disordered
metal UCo1−xFexGe as the first clear example that exhibits the associated critical exponents predicted by
the BKV theory.
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Quantum phase transitions (QPTs) have been a topic of
intense research efforts for several decades [1–4]. Here, the
earliest theory of a QPTwas provided by Stoner in 1938 for
itinerant ferromagnets [5]. Because of the exotic behavior
frequently observed in the vicinity of ferromagnetic QPTs
in metals, such as unconventional spin-triplet supercon-
ductivity [6], partial magnetic order [7], and topological
non-Fermi liquid behavior [8], their theoretical under-
standing is at the origin of modern solid state physics.
In their seminal work, Hertz and later Millis predicted that
ferromagnetic QPTs are continuous, or second order, and
calculated the associated critical exponents [9,10].
However, at the turn of the century, an extension of the
Hertz-Millis theory by Belitz, Kirkpatrick, and Votja
demonstrated in remarkable agreement with experiments
that a QPT in two and three dimensions from a para-
magnetic to a homogeneous ferromagnetic state is generi-
cally discontinuous (or first order) provided that the
underlying metal is sufficiently clean [11]. The responsible
mechanism is the coupling of the magnetization to elec-
tronic soft modes that universally exist in metals, which
in turn leads to a fluctuation-induced first-order transition.
We note that fluctuation-induced first-order transitions
are broadly important in solid-state physics and even
beyond [12].
The Belitz-Kirkpatrick-Vojta (BKV) theory further

reveals the existence of a tricritical point that separates a
line of first-order transitions at low temperature from a line
of second-order transitions at higher temperatures when the
nonthermal control parameter x that provides access to the
QPT is varied. Including the effects of an external magnetic
field H in the BKV calculations generates tricritical wings
that emerge from the tricritical point as a function of
magnetic field [13]. The resulting unique temperature T vs
x and H phase diagram has been observed in experiments
on many clean ferromagnetic metals, making the BKV
theory one of the most successful theories of QPTs [4].

Because in a large number of itinerant ferromagnets the
QPT may be accessed via chemical substitution, and some
materials show incipient disorder, considering the effect of
disorder on the nature of a ferromagnetic QPT is crucial.
If the disorder is sufficiently strong, the nature of the
electronic soft modes changes from ballistic to diffusive.
This slowing down of the itinerant electrons promotes
ferromagnetism. According to the BKV theory, this results
in the suppression of the tricritical point to zero temperature
and the resulting QPT is second order [14–16], with critical
exponents that suggest the transition is even more con-
tinuous than in the Hertz-Millis theory [4,17]. Although
most disordered ferromagnetic metals exhibit second-order
QPTs, the critical exponents predicted by the BKV theory
(reviewed below) have never been observed consistently.
In this Letter, we demonstrate that the critical behavior

observed at a ferromagnetic QPT in UCoGe that is accessed
via chemical substitution of Co with Fe is in excellent
agreement with the BKV theory. UCoGe orders ferromag-
netically below a Curie temperature TC ¼ 3 K and coexists
with unconventional superconductivity below TS ¼ 0.8 K
[18]. Superconductivity in UCo1−xFexGe is only observed
for Fe concentrations x ≤ 0.025 [19]. In contrast, TC first
increases to the maximum TC ≈ 9 K at x ¼ 0.075–0.1, and
then smoothly decreases to zero temperature at xcr ¼ 0.23
consistent with a second-order QPT at xcr [19]. The
observed increased values of the residual resistivity
[ρ0ðxcrÞ ≈ 420 μΩ cm] [19] suggest a significant amount
of disorder making UCo1−xFexGe an ideal candidate to
look for the critical exponents predicted by the BKV theory
for disordered metals. In our previous study, the magneti-
zation near the QPTwas found to scale as MðT ¼ 2 K; HÞ
∝ H1=δ as a function of H. Here, the corresponding critical
exponent was determined to be δ ≈ 3=2 in agreement with
the BKV theory for a disordered QPT. Because strictly
speaking the exponent δ takes on the value associated with
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the QPT only for T ¼ 0, this has motivated our present
study of MðT;HÞ down to much lower temperatures. Our
results show that near the disordered ferromagnetic QPT in
UCo1−xFexGe, all critical exponents may be accurately
determined from M and agree quantitatively with the BKV
theory.
Samples of UCo1−xFexGe were synthesized using a

custom built single-arc furnace using a water-cooled copper
hearth in an argon atmosphere with a zirconium getter.
The starting materials of U (99.9%), Co pieces (99.99%),
Fe pieces, and Ge pieces (99.9999þ%) were weighed
stoichiometrically, arc melted, flipped over, and remelted
five times to ensure chemical homogeneity. Chemical
analysis of all samples was carried out using a commercial
scanning electron microscope (FEI Inspect F) equipped
with an energy dispersive spectroscopy microprobe.
The energy dispersive spectroscopy analysis (see the
Supplemental Material [20]) shows that they are indeed
chemically homogeneous, where in particular the nominal
Fe concentration x agrees with the Fe concentration xmeas
within the error bar. Therefore, we use the nominal
Fe concentration x throughout the Letter. We note that
polycrystalline samples were chosen purposefully to obtain
the most reliable data. Specifically, the magnetic properties

of UCo1−xFexGe near the QPT are extremely sensitive to
the Fe concentration as shown below. Single crystals of
UCo1−xFexGe are grown via the Czochralski method,
which typically leads to concentration gradients that would
be detrimental for the determination of critical exponents.
Finally, it has been demonstrated that the use of poly-
crystalline samples does not affect the ability to reliably
determine scaling exponents of phase transitions [21,22].
All magnetization MðT;HÞ data presented here were

obtained in a Quantum Design magnetic property meas-
urement system with a 3He insert, reaching temperatures T
from 300 K down to 460 mK in fields up to 7 T. Figure 1
shows isotherms of the magnetization for various T and
x ¼ 0.22 (a), 0.23 (b), and 0.24 (c). The data are displayed
in a log-log plot so that the slope of each curve corresponds
to 1=δ. We note that for the determination of 1=δ, the data
for H≦0.1 T, where scaling is not expected because of
domain effects, were omitted [22]. The resulting temper-
ature dependence of 1=δ for each of the three concen-
trations is shown in Figs. 1(d)–1(f). Inspecting Fig. 1(f) for
x ¼ 0.24, it is clear that 1=δ saturates at 2=3 for T → 0, in
excellent agreement with theory. For x ¼ 0.22 and 0.23 no
saturation is observed and the value of 1=δ for T → 0 is
more challenging to estimate.
Before continuing the discussion of our results, it is

useful to recall the critical exponents that can be determined
from magnetization data and their values as calculated via
the BKV theory for a three-dimensional, ferromagnetic
QPT in a metal with significant disorder [4,17]. They are
summarized in Table I. Two regimes have to be considered:
(a) the so-called asymptotic regime that should only exist in
a narrow region near the QPT, and (b) the preasymptotic
region that describes the critical exponents further away
from the QPT [23]. For δ the asymptotic and preasymptotic
values are 3=2 and 11=6, respectively. This suggest that
x ¼ 0.24 is directly in the vicinity of the QPT and thus
shows asymptotic behavior. In contrast, for x ¼ 0.22 and
0.23 preasymptotic scaling is expected, and indeed pro-
vides an excellent description of our data as shown in detail
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FIG. 1. Isotherms of the magnetization MðT;HÞ of
UCo1−xFexGe as a function of magnetic field H for Fe concen-
trations x ¼ 0.22 (a), 0.23 (b), and 0.24 (c) displayed in a log-log
plot. BecauseMðT;HÞ ∝ H1=δ the slope of each curves describes
1=δ. In panels (d)–(f), the temperature dependence of 1=δ is
shown for each concentration. Because for H≦0.1 T scaling is
not expected due to domain effects, the corresponding data were
omitted for the determination of 1=δ [22]. The blue dashed lines
in panels (d) and (e) are guides to the eye. The horizontal dashed
black line denotes δ ¼ 3=2. The red solid curves are the partial
derivative ∂ð1=δÞ=∂T with respect to T.

TABLE I. The critical exponents for a ferromagnetic second-
order quantum phase transition for a “dirty” itinerant ferromagnet
in three dimensions according to the BKV theory [4,17] are
provided for both the (a) asymptotic and (b) preasymptotic
regimes. Column (c) denotes the corresponding values for an
unstable Hertz type fixed point in three dimensions in the dirty
limit.

Critical
exponent

(a)
Asymptotic

(b)
Preasymptotic

(c)
Hertz (dirty)

δ 3=2 11=6 3
βT 1 3=4 5=8
γT 1=2 5=8 5=4
ν 1 3=5 1=2
zm 2 8=3 8=5
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below. The absence of a low-temperature saturation of 1=δ
for x ¼ 0.22 and 0.23 is explained by the fact that critical
scaling is typically only observed to higher temperatures
close to the QPT [1]. Therefore, measurements to lower
temperatures than accessible in our experiments are required
to determine δ unambiguously. Nevertheless, inspection
of the partial derivative ∂ð1=δÞ=∂T [Figs. 1(d)–1(f)] dem-
onstrates that the slope of 1=δ is finite for T → 0 [cf. for
x ¼ 0.24, ∂ð1=δÞ=∂T → 0], suggesting that 1=δ < 2=3
in the preasymptotic regime in agreement with the BKV
theory.
Because the exponent δ takes on the value associated

with the quantum critical point only for T ¼ 0, it is crucial
to inspect the critical behavior as a function of temperature.
Here, the critical exponents βT and γT describe the temper-
ature scaling ofMðT;HÞ, where isotherms converge onto a
single curve when displayed asMðT;HÞ=TβT vsH=TγTþβT .
Moreover, βT and γT are related to δ via the so-called
Widom relationship γT ¼ βTðδ − 1Þ [17].

To confirm our findings for δ we plot the measured
isotherms of the magnetization from Figs. 1(a)–1(c) via the
scaling relationMðT;HÞ=TβT vsH=TγTþβT using the values
for βT and γT predicted by the BKV theory for a metal with
significant disorder (cf. Table I). Here, according to our
analysis for δ, we have used the preasymptotic values for βT
and γT for x ¼ 0.22 and 0.23, and the asymptotic values for
x ¼ 0.24. As shown in Fig. 2, the scaling works remarkably
well for all three concentrations, especially at low temper-
atures, thus supporting our results for δ, and highlighting
the excellent agreement with the BKV theory.
We note, however, that detailed analysis of the scaling of

MðT;HÞ reveals that the theoretical BKV values of βT and
γT are not the only combination that produces good scaling.
This is illustrated in Figs. 2(d)–2(f), where we plot the
adjusted R2 value that describes the goodness of fit (R2 ¼ 1
is the best agreement) for a wide range of combinations
(βT , γT) (see the Supplemental Material [20] for details).
From the small differences in R2 for the various combi-
nations (βT , γT), it is clear that the magnetization data are
not sensitive enough to pick a single set of values. This is
also confirmed by visual inspection of the scaling plots of
M, where the scaling looks identical for all combinations
(βT , γT) that correspond to the red areas inFigs. 2(d)–2(f) (see
the SupplementalMaterial [20]).However, a consistent set of
values is obtained when the Widom relationship that also
takes into account δ is considered. For reference, we plot the
Widom relationship for each concentration inFigs. 2(d)–2(f),
where the dashed black and white lines use the asymptotic
and preasymptotic value of δ determined from the BKV
theory (cf. Table I). From inspection of Figs. 2(d) and 2(e), it
is clear that combinations (βT , γT) that lead to the best scaling
for x ¼ 0.22 and 0.23 generally agree better with the
preasymptotic value of δ (i.e., the white dashed line runs
through the red area with R2 ≈ 1). In contrast, for x ¼ 0.24
the asymptotic value of δ gives better agreement as shown in
Fig. 2(f) (the black dashed line runs through the red areawith
R2 ≈ 1) in agreement with our results from Fig. 1.
Figure 2(f) also demonstrates that the asymptotic values

(βT ¼ 1, γT ¼ 1=2) (cf. blue dashed lines) lie well in the
center of combinations (βT , γT) that lead to the excellent
scaling of MðT;HÞ. This further highlights how well the
data for x ¼ 0.24 agree with the asymptotic scaling
predicted by the BKV theory, and suggest that x ¼ 0.24
is the critical Fe concentration, or is at least very near to it.
Similarly, as shown in Figs. 2(d) and 2(e) for x ¼ 0.22
and 0.23, the preasymptotic values (βT ¼ 3=4, γT ¼ 5=8)
(cf. blue dashed lines) belong to the combinations of
(βT , γT) that converge all isotherms of M onto a single
curve.
The product of two additional critical exponents ν and zm

can be determined from M. Here, zm is the relevant
dynamical exponent [17]. Together, they describe how
TC is suppressed as a function of the tuning parameter x
via TC ¼ ðx − xcrÞzmν. The theoretical asymptotic and
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FIG. 2. Scaling of the magnetization M of UCo1−xFexGe as
function of magnetic fieldH and temperature T. (a)–(c)M=TβT vs
H=TγTþβT for the Fe concentrations x ¼ 0.22, 0.23, and 0.24,
respectively. The respective critical exponents βT , γT , and δ are
denoted in each plot (see the main text). (d)–(f) The correspond-
ing adjusted R2 value that describes the goodness of fit for the
scaling of M in panels (a)–(c) (R2 ¼ 1 is the best agreement
between the data and fit) for a wide range of combinations of
the critical exponents (βT , γT ) for each x. The details of how to
calculate the adjusted R2 value are provided in the Supplemental
Material [20]. The black and white dashed lines denote the
Widom relationship γT ¼ βTðδ − 1Þ that relates the critical
exponents βT and γT with the exponent δ determined from Fig. 1.
Here, the black and white lines use the asymptotic and pre-
asymptotic values of δ, respectively (see the text and Table I).
The blue dashed lines denote the values of (βT , γT) used for the
modified scaling plots of M in panels (a)–(c).
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preasymptotic values for zmν are 2 and 8=5, respectively
(Table I). According to the BKV theory, and also in
agreement with our data that only show asymptotic scaling
for x ¼ 0.24, the asymptotic regime typically only exists in
a very narrow region around the QPT. Further, as demon-
strated above for x ≤ 0.23, the magnetization exhibits
preasymptotic scaling, suggesting that TCðxÞ should scale
with zmν ¼ 8=5. In contrast, we find that TCðxÞ as
determined in Ref. [19] scales well with zmν ¼ 4=5, as
we show in Fig. 3. zmν ¼ 4=5 is consistent with a Hertz
type ferromagnetic QPT in the dirty limit (cf. Table I).
Despite the fact that a Hertz fixed point is unstable, it is
expected from the BKV theory that it will determine the
observable behavior over sizable regions of the phase
diagram in many disordered materials [17]. Only in a close
vicinity of the QPT is it expected to observe the (pre)
asymptotic behavior. However, because the phase transition
rapidly becomes extremely broad for x → xcr, the scaling of
TCðxÞ near xcr cannot be precisely determined.
To summarize, the salient findings of our study are as

follows: (i) the critical exponent δ defined via MðT →
0; HÞ ∝ H1=δ is equal to 3=2 for the critical Fe concen-
tration xcr ¼ 0.24 and is significantly smaller than 3=2 for
x ¼ 0.22 and 0.23 slightly away from the QPT; (ii) our data
are in excellent agreement with the critical exponents βT
and γT that describe the temperature scaling of MðT;HÞ
being 1 and 1=2 for x ¼ 0.24, and 3=4 and 5=8 for x ¼ 0.22
and 0.23, respectively; (iii) our results are consistent with
the QPT being at or in the very near vicinity of xcr ¼ 0.24;
(iv) the asymptotic and preasymptotic regions are situated
at the Fe concentration x > 0.23 and x ≤ 0.23, respec-
tively; (v) TC is found to scale as TC ¼ ðx − xcrÞzmν for a
wide range of x with zmν ¼ 4=5 consistent with a Hertz
fixed point and in agreement with the BKV theory. This

establishes that UCo1−xFexGe is the first metal that exhibits
critical behavior near a ferromagnetic QPT accessed by
chemical substitution that is in complete agreement with
the predictions of the BKV theory for a metal with
significant disorder.
For completeness, we note that a critical exponent

δ ¼ 3=2 has already been observed in URu2−xRexSi2
[24] and Sr1−xAxRuO3 [25] at T ¼ 1.8 K and T ¼ 5 K,
respectively. However, these results were obtained at
finite temperature, whereas the result of the BKV theory
is only valid for T → 0 and in the immediate vicinity of the
QPT. Notably, for URu2−xRexSi2, the QPT is situated at
xc ¼ 0.15–0.2 but δ ¼ 3=2 was obtained for x ¼ 0.3
[24,26]. Finally, all other exponents βT , γT , and zmν either
do not agree with the BKV theory [24,26] or were not
determined.
In conclusion, our results demonstrate that metals with

significant disorder exhibit second-order ferromagnetic
QPTs that are more continuous than in the Hertz-Millis
theory. This establishes for the first time that the BKV
theory not only describes clean materials extremely well,
but is also able to calculate the critical exponents for
disordered metals. Our work also identifies several reasons
why no other disordered materials have been reported to
show BKV critical exponents. Most notably, it is difficult to
achieve the right amount of disorder to observe such
behavior; for too small disorder, the tricritical point remains
at nonzero temperatures and no quantum critical behavior
occurs. In contrast, for too strong disorder, quantum
Griffiths effects that compete with the critical behavior
are expected [4]. Moreover, there is currently no clear
method of determining disorder quantitatively to allow for
comparison with theory, and choosing a suitable material is
challenging. For example, the often used residual resistivity
ratio is only useful in comparing the disorder for different
specimens of the same material, and is not meaningful for
distinct materials. Further, as shown in detail here, special
diligence is required to obtain meaningful critical expo-
nents, as typical magnetization measurements are too
insensitive to choose a single set of critical exponents
(see the Supplemental Material [20]). Finally, for
UCo1−xFexGe, we have shown that the asymptotic scaling
is only observed in a tiny region around the QPT [23],
which implies that great care is required to identify this
region. However, our study may provide a recipe for
identifying further disordered metals that exhibit BKV
critical exponents near a ferromagnetic QPT.
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