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We report on the single-atom-resolved measurement of the distribution of momenta ℏk in a weakly
interacting Bose gas after a 330 ms time of flight. We investigate it for various temperatures and clearly
separate two contributions to the depletion of the condensate by their k dependence. The first one is the
thermal depletion. The second contribution falls off as k−4, and its magnitude increases with the in-trap
condensate density as predicted by the Bogoliubov theory at zero temperature. These observations suggest
associating it with the quantum depletion. How this contribution can survive the expansion of the released
interacting condensate is an intriguing open question.
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In quantum systems, intriguing many-body phenomena
emerge from the interplay between quantum fluctuations and
interactions. Quantum depletion is an emblematic example
of such an effect, occurring in one of the simplestmany-body
systems: a gas of interacting bosons at zero temperature. In
the absence of interactions, the ground state corresponds to
all particles occupying the same single-particle state. Taking
into account interparticle repulsive interactions at the mean-
field level leads to a similar solution where all particles are
condensed in the same one-particle state whose shape is
determined by the trapping potential and interactions. In a
beyond mean-field approach, which can be interpreted as
taking into account quantum fluctuations and two-body
interactions, the description is dramatically different. The
many-body ground state consists of several components: a
macroscopically occupied single-particle state, the conden-
sate, and a population of single-particle states different from
the condensate, the depletion.
This many-body description applies to diverse bosonic

systems such as superfluid helium [1], exciton polaritons
[2], and degenerate Bose gases [3]; it has also found
analogies in phenomena such as Hawking radiation from
a black hole [4] and spontaneous parametric down-
conversion in optics [5]. The fraction of atoms not in
the condensate at zero temperature, the quantum depletion,
increases with the strength of interparticle interactions and
with the density, rising up to 90% in liquid 4He [1]. In
ultracold gases, where the density is significantly smaller,
the quantum depletion usually represents a small fraction
(less than 1%) of the total population. At nonzero temper-
ature there is an additional contribution to the population of
single-particle states above the condensate, originating
from the presence of thermal fluctuations.
For weakly interacting systems, Bogoliubov theory

describes quantum and thermal contributions to the conden-
sate depletion [6,7]. This approach shows that the elementary,
low-energy excitations are collective quasiparticle (phonon)

modes, as has been verified in experimental studies with
liquid 4He [8], degenerate quantum gases [9], and exciton
polaritons [2]. At zero temperature, the many-body ground
state is defined as a vacuum of these quasiparticle modes.
When projected onto a basis of single-particle states with
momentum ℏk, this many-body ground state exhibits a
distribution nðkÞ, which scales as k−4 at large k. These power
law tails do not exist in mean-field descriptions, for which
the momentum distribution has a finite extent. At nonzero
temperature, the contribution to nðkÞ induced by thermal
fluctuations decays exponentially for energies larger than the
temperature. Previous experiments with atomic gases [10,11]
have observed the total depletion of the condensate after a
time-of-flight expansion, but could not distinguish between
the thermal and quantum contributions.
In this Letter, we report on the observation of momen-

tum-space signatures of thermal and quantum depletion
in a gas of interacting bosons. We investigate, for various
temperatures and atomic densities, the three-dimensional
atomic distribution after a long time of flight (see Fig. 1),
i.e., the asymptotic momentum distribution. Three compo-
nents can be identified (see Fig. 2): the condensate (I),
the thermal depletion (II), and a tail decaying as k−4 and
increasing with the in-trap condensate density (III).
This suggests associating region III with the quantum
depletion, but with two caveats. First, k−4 tails originated
from contact interaction were observed to vanish during the
expansion of interacting fermions [12]. Recent theoretical
work investigating interacting bosons predicts that the k−4

tails adiabatically decrease with the condensate density
during the expansion [13]. Second, the magnitude of the
k−4 tails we measure is larger than the in-trap prediction
of the Bogoliubov theory, by a factor of about 6. Our
identification of the k−4 tail with the quantum depletion
thus demands that there exists either a nonadiabatic process
in the expansion, decoupling the in-trap k−4 component
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from the expanding condensate, or an interaction-induced
effect beyond the mean-field description of the expansion,
leading to 1=k4 tails.
Our experiment is performed with a Bose-Einstein

condensate of metastable helium-4 atoms (4He�). Cigar-
shaped condensates, of typically N ¼ 2 × 105 4He� atoms
in the polarized 23S1, mJ ¼ þ1 state are produced in an
optical dipole trap with trapping frequencies ω=2π ¼
ð438; 419; 89Þ Hz [14,15]. After abruptly turning off the
optical trap (in less than 2 μs) we detect the gas with a
microchannel plate (MCP) [16,17], after a 55 cm free
fall corresponding to a time of flight (TOF) of ∼330 ms.
A radio-frequency (rf) ramp transfers a fraction of the
polarizedmJ ¼ þ1 atoms to the nonmagnetic mJ ¼ 0 state
after 2 ms of TOF (see Ref. [18] for details). The presence
of a magnetic gradient after the RF ramp ensures that
only mJ ¼ 0 atoms fall onto the MCP and can be detected.
The MCP allows us to detect 4He� atoms individually and
to record the two-dimensional (2D) position and the arrival
time of each atom in the plane of the detector. The arrival
time of each atom directly translates into a vertical
coordinate, so that we reconstruct the complete 3D atoms
distribution, in contrast with the usual optical imaging that
yields a 2D column-integrated density. Another advantage
of a MCP operated in the counting mode is its extremely
low dark count rate. Here it allows us to investigate the
atomic density over more than 5 decades (see below).
The detector is placed 55 cm below the trapped cloud

[see Fig. 1(a)], so that after switching off the trap, the
observation is made in the far-field regime where finite-
size effects of the source can be safely neglected. In the

free-falling frame of reference, we thus identify the position
r of a detected atom (with respect to the cloud center) with a
momentum component k ¼ mr=ℏt, where t ¼ 330 ms is
the time of flight of the cloud center [18]. This yields the
asymptotic momentum distribution n∞ðkÞ obtained from
the density distribution of the expanding cloud nðr; tÞ,
according to the ballistic relationship

n∞ðkÞ ¼ ðℏt=mÞ3nðr; tÞ: ð1Þ

The distribution n∞ðkÞ should not be confused with the in-
trap momentum distribution nðkÞ, since the initial stage
of the expansion is affected by interatomic interactions.
Nevertheless, as we argue below, the high-momentum tails
of n∞ðkÞ provide interesting information on the in-trap
momentum distribution nðkÞ.
An example of n∞ðkÞ is shown in Fig. 1(b). The main

component is the pancake-shaped distribution expected
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FIG. 1. (a) Sketch of cloud expansion and detection by a
microchannel plate detector, yielding the 3D asymptotic momen-
tum distribution (far-field regime). The initially cigar-shaped
Helium condensate (black) undergoes anisotropic expansion,
inverting its aspect ratio. Quantum depletion and/or thermally
excited atoms (grays) populate momentum states beyond those
associated with the condensate, and are expected to have a
spherical symmetry. (b) Measured 3D distribution of atoms
n∞ðkÞ after a 330 ms time of flight. The central dense part
corresponds to the condensate while the isolated dots are excited
particles outside of the condensate wave function. Also shown are
the 2D projections, highlighting the condensate anisotropy.
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FIG. 2. 1D momentum profiles obtained from cuts of the 3D
data n∞ðkÞ. (a) Profiles along the radial (blue) and longitudinal
(purple) directions. In linear scale, the tails are not visible.
(b) Log-log scale plot of the radial profile. The solid line is
the scaling solution for the condensate in the Thomas-Fermi
approximation (region I: k < 1.7 μm−1); the dotted line is a
Bose distribution fitting the thermal wings (region II:
1.7 < k < 4.3 μm−1); the dashed line is a k−4 power law fitting
the high-momentum tails (region III: k > 4.3 μm−1). Solid lines
are a smoothed average of the density data, and the lightly shaded
band is the running standard deviation. The dark count rate
corresponds to a level less than ∼10−2 μm3, which is 1 order of
magnitude below the lowest data point. The plotted range of
momenta is limited by the physical size of the detector.
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for the cigar-shaped condensate according to the mean-field
description of the expansion [19,20]. We also distinguish
momentum components beyond those of the condensate,
with a much lower density and an isotropic distribution [18].
From 3D distributions n∞ðkÞ, we obtain radial and longi-
tudinal profiles as shown in Fig. 2 [18]. The resulting profiles
exhibit three distinct regions, as illustrated in Fig. 2(b).
First, the observed distributions are dominated by the

high-density condensate (region I: k≡ jkj < 1.7 μm−1).
The initial expansion of the condensate is driven by inter-
particle interactions, resulting in an asymptotic distribution
different from the in-trap momentum distribution. This
dynamics is fully captured by a mean-field treatment, the
scaling solution [19,20] calculated in the Thomas Fermi
approximation, as shown in Fig. 2(b).We have checked that a
numerical solution of the time-dependent Gross-Pitaevskii
equation for the pure condensate, beyond the Thomas Fermi
approximation, yields negligible corrections [18].
Beyond the anisotropic mean-field distribution we

observe high-momentum tails (k > 1.7 μm−1) with spheri-
cal symmetry [18]: we attribute these components [regions
II and III in Fig. 2(b)] to the depletion of the condensate.
The isotropic character of the atomic distribution in the tails
indicates that the anisotropicmean-field potential describing
the interactions in the condensate does not play a significant
role in the expansion of particles belonging to regions II
and III. Thus, we assume in the following that the high-
momentum components of the tails, corresponding to a
kinetic energy larger than the chemical potential of the
condensate, quickly escape the condensate and are not
affected by the mean-field potential during the expansion.
The tails arevisible over three decades in density, allowing us
to perform a detailed study of their momentum dependence.
We observe two distinct regions: a middle region without a
well-defined power-law variation (region II), and a high-
momentum region with density varying as k−α (region III).
A power-law fit to the data in region III yields α ¼ 4.2ð2Þ.
A quantitative description of the condensate depletion

close to zero temperature is provided by Bogoliubov’s
microscopic theory, which yields a beyond mean-field
model, taking into account quantum and thermal fluctua-
tions [6,7]. In the many-body Hamiltonian, this approxi-
mated approach retains only quadratic terms in the particle
operators ak, where ak is the operator annihilating a
particle with momentum ℏk. The simplified Hamiltonian
can then be diagonalized by introducing the quasiparticle
operators bk defined by the Bogoliubov transformation
bk ¼ ukak þ v−ka

†
−k [6,7].

At zero temperature, the many-body ground state is the
vacuum of quasiparticles, defined as hb†kbki ¼ 0 for any
k ≠ 0. It corresponds to a nonzero population of excited
single-particle states, ha†kaki ¼ jvkj2 for k ≠ 0. This is the
quantum depletion of the Bose condensate, which has no
classical analog, and can be seen as arising from the
interplay of Bose statistics and interactions. At nonzero

temperature, the particle occupation number of nonzero
momentum k can be expressed analytically in terms of the
quasiparticle occupation number:

nðkÞ ¼ ha†kaki ¼ ðjukj2 þ jvkj2Þhb†kbki þ jvkj2; ð2Þ
with the occupation number of quasiparticles given by a
Bose-Einstein distribution,

hb†kbki ¼
1

expðϵðkÞ=kBTÞ − 1
; ð3Þ

where ϵðkÞ is the Bogoliubov dispersion relation, kB is
Boltzmann’s constant, and T is the temperature. The
interpretation of Eq. (2) is clear: the first term, proportional
to hb†kbki, represents the thermal depletion; the second term
is associated with the quantum depletion.
The particle occupation number jvkj2 corresponding to the

quantum depletion varies as k−1 for kξ ≪ 1, and as k−4 for
kξ ≫ 1, where ξ is the healing length of the condensate. The
small k behavior is related to the Heisenberg inequality
associated with the particle and the density operators [21].
The large k behavior arises due to the two-body contact
interaction and is related to Tan’s contact constant, a
universal quantity that connects contact interactions to the
thermodynamics of amany-body system [22,23]. In contrast,
the depletion associated with the thermal excitations varies
differently with k due to the additional term hb†kbki.
In particular, it decays exponentially for kλdB ≫ 1, where
λdB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2=2πmkBT
p

is the de Broglie wavelength. These
differences provide a means to unambiguously distinguish
the quantum depletion from the thermal depletion.
The presence of an inhomogeneous trap does not modify

the prediction for the condensate depletion at momenta large
compared to the inverse system size 1=R≃ 0.08 μm−1,
where the results of Bogoliubov theory can be averaged
using the local density approximation (LDA). For a harmoni-
cally trapped gas, a LDA calculation keeps the large-
momentum k−4 scaling of the homogeneous model [18].
On the other hand, the thermal depletion distribution in a
harmonic trap approaches a polylog function at high
temperature [3].
To identify the contributions in regions II and III, we

have investigated the tails of the measured distribution
n∞ðkÞ as a function of temperature. Figure 3 presents the
radial distributions k4 × n∞ðkÞ for clouds subjected to a
controlled heating sequence [18]. Assuming the LDA
average of Eq. (2), we fit the tails in Fig. 3 (k > 2 μm−1)
with the function k4 × nfitðkÞ, where

nfitðkÞ ¼
Nthg3=2½expð−k2λ2dB=4πÞ�

1.202ð2π=λdBÞ3
þ C∞
ð2πÞ3k4 ; ð4Þ

with Ta (via λdB ¼ h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πmkBTa
p

), Nth and C∞ are fitting
parameters. The first term in Eq. (4) is the polylog function
describing a thermal component with an atom number Nth
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and an apparent temperature Ta [24]. The second term
corresponds to a distribution decaying as 1=k4. The
function nfitðkÞ is an excellent fit to the experimental
profiles (see Fig. 3). As the gas is heated, the temperature
Ta and the thermal fraction fth ¼ Nth=N increase. The
variation of fth with Ta=Tc (Tc being the critical temper-
ature of condensation) is in excellent agreement with the
semiclassical prediction [3], confirming our identification
of region II with the thermal depletion. Although they
represent less than∼0.5% of the total atom number, the k−4

tails are clearly visible beyond the thermal component
(see Fig. 3), and thus associated with a zero-temperature
effect [25]. In the weakly interacting regime that we
investigate, condensate lifetimes are on the order of
seconds. We have measured identical k−4 tails when
holding the atoms for an extra second in the trap, showing
that the gas is at equilibrium before the release.
The presence of k−4 tails in a cloud released from a trap

was previously reported in strongly interacting Fermi gases
[12], but was not found with bosons [26]. The observation
of the k−4 tails in a Fermi gas required ramping the
interaction strength to zero before the expansion [12], on
a time scale shorter than that associated with many-body
effects. Recent theoretical work concluded that the k−4 tails
should adiabatically vanish during the expansion of a Bose
gas when the strength of interaction is kept constant [13].
These considerations indicate that in order to associate the
observed k−4 tails in n∞ðkÞ with the quantum depletion in
the trapped cloud, we must invoke a nonadiabatic process.
Since the scattering length in the mJ ¼ 0 state is expected

to be smaller than that in the mJ ¼ þ1 state [18,27], a
nonadiabatic transfer between these two states at the optical
trap turnoff might explain our observation, but we have not
yet found any evidence of this possibility in the experiment.
On the other hand, there is no many-body treatment of
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FIG. 3. Measured k4n∞ðkÞ plotted as a function of k and at various temperatures. Solid blue lines are a smoothed average of the
density data, and the lightly shaded blue band shows the running standard deviation. The dashed line is a fit using Eq. (4) which involves
two terms: the thermal depletion (also shown as a dotted line) and the quantum depletion revealed by the k−4 scaling at large k. The
fitting procedure yields the temperature Ta, the thermal atom number Nth and the asymptotic constant C∞. Noted in each subplot are Ta,
the ratio of the thermal energy and the chemical potential kBTa=μ and fth ¼ Nth=N.
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FIG. 4. Contact constant C∞=N0 per condensed particle plotted
as a function of the condensate density n0. The geometric
trapping frequency ω̄=2π and the ratio kBTa=μ are indicated.
The dashed line is the Bogoliubov prediction in the LDA, CLDA
(see text), and the solid line is 6.5 × CLDA.

PRL 117, 235303 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

2 DECEMBER 2016

235303-4



the expansion of an interacting Bose gas. We thus cannot
exclude the possibility that the tails result from a modifi-
cation of the beyond mean-field momentum distribution
during the time-of-flight dynamics.
In order to further investigate the origin of the k−4 tails,

we have studied their dependence upon the condensate
density. The fitting parameter C∞ of Eq. (4) is equal to the
Tan contact constant [22,23], which, for a harmonically
trapped gas, is found equal to CLDA ¼ ð64π2=7Þa2sN0n0 in
the LDA approximation [18]. The experimental results are
plotted in Fig. 4 where the error bars reflect the uncertainty
on C∞ from the fit, as well as those on the calibration of
N0 and n0 [18]. The fitted contact constant C∞=N0 per
condensed particle is found proportional to n0, as expected.
The measured values of C∞, however, are about 6.5 times
larger than the expected value CLDA. Note that in order to
increase the density n0 we increase the trapping frequency,
which results in a decrease of the density of the central,
dominant part of the distribution n∞ðkÞ measured after
TOF. The observed proportionality between C∞=N0 and n0
in spite of the variation of n∞ðk≃ 0Þ rules out several
possible spurious effects in the response of the MCP.
In conclusion, the measurement of the momentum

distribution of a weakly interacting Bose gas released from
a trap has allowed us to observe two components in the
high momentum tails beyond the mean-field distribution.
The first one is due to thermal depletion, and although
some questions remain open, there are several observations
which suggest associating the second one with the quantum
depletion. The single-atom detection method of metastable
helium gases is also able to provide signals of atom-atom
correlations in momentum, a feature we intend to use in
future investigations of momentum-space signatures of
many-body effects.
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