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A detailed analysis is presented of the various stages of strong coupling Brillouin plasma amplification,
emphasizing the importance of the chirp which can be of threefold origin: the intrinsic one driven by the
amplification process, the one originating from the chirped-pulse-generated laser pulses, and the one
associated with the plasma profile. Control of the overall chirp can optimize or quench the energy transfer.
The time-dependent phase relation explains the energy flow direction during amplification and is
characteristic for this strong coupling process. The study is also of potential importance to understand
and maybe control cross-beam-energy transfer in inertial confinement fusion.
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Plasma optics is a promising and powerful way to
manipulate coherent light at intensities which cannot be
handled by solid-state optical materials [1,2]. Plasma
photonic devices also allow for the dynamic control of
laser beams in general [3–5]. Exploiting three-wave cou-
pling processes in plasmas has received considerable
attention over the past few years as a new way to create
short and intense pulses over large cross sections [6–31],
which are subsequently focused using plasma devices
[32–34]. This opens up the way for future exawatt laser
systems [35,36] such as the proposed fourth pillar of the
Extreme Light Infrastructure (ELI) [37] or Exawatt Center
for Extreme Light Studies [38]. In order to attain short
time scales, the suitable three-wave coupling processes
[39,40] are based on either Raman backscattering (SRS)
[6–8,10–14,16,26,31] or strong coupling Brillouin back-
scattering (SCSBS) [9,15,17–25,27–30]. In this Letter,
SCSBS is considered and the process is discussed in detail
from the initial coupling up to the self-similar regime [9]. In
particular, it is shown that, in contrast to the weak coupling
regime of Brillouin backscattering, Raman backscattering,
and standard optical parametric amplification (OPA) tech-
niques [41], the phase relation of the constituent waves,
transverse electromagnetic and longitudinal compressional,
is continuously time dependent. The time dependence of
the total phase of the three implicated waves explains the
energy flow direction during the amplification process and
determines the quality of the amplification. This temporal
dependence results in a time-dependent frequency of either
a seed, electrostatic wave, or pump (analogous of a chirp).
Once the evolution of the intrinsic chirp for given inter-
action conditions is understood, the contributions from the
laser pulse and the plasma profile allow us to partially
control the overall chirp and optimize or quench the
amplification process. This understanding allows us to

improve the experimental interaction process [42,43].
Previous spatiotemporal analysis of SCSBS for long
(nanosecond) pulses were limited to the regime where
pump depletion is negligible [44] or to a regime dominated
by flow inhomogeneities [45]. More recently, in the context
of plasma amplification and relatively short pulses, it was
pointed out by numerical analysis that the sign of the laser
chirp is important in SCSBS coupling for a homogeneous
plasma [24], in contrast to the symmetric effect of laser
chirp in the weak coupling SBS regime [23] or the SRS
regime [8]. However, no scaling laws were derived, and the
approach was not based on the analysis of the waves’
phases.
The strong coupling regime of Brillouin backscattering

is characterized by the fact that the density perturbation
envelope varies quickly over an acoustic period. Therefore,
the second derivative in the plasma response needs to be
retained:

ð∂t þ vpg ∂xÞEp ¼ −i
ω2
pe

4ω0

NEse−iðω0s−ω0Þt;

ð∂t − vsg∂xÞEs ¼ −i
ω2
pe

4ω0s
N�Epe−iðω0−ω0sÞt;

ð∂2
t − c2s∂2

xÞN ¼ −
2Ze2

memic2
EpE�

se−iðω0−ω0sÞt: ð1Þ

E and N ¼ δn=ne are the electromagnetic field and density
perturbation, respectively. The indices p and s refer to the
pump pulse and the seed pulse, respectively, and ω0 and k0p
are the pump frequency and wave vector, respectively. The
density perturbation wave vector is k, with k≃ 2k0p, and

vg ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ne=nc

p
is the group velocity of the correspond-

ing electromagnetic waves, cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZTe=mi

p
the ion sound
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velocity, and ωpe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nee2=meϵ0

p
the background electron

plasma frequency. These equations describe the energy
coupling between the three waves up to and including
pump depletion. In this SCSBS regime, the unstable
ion-acoustic wave is a driven quasimode characterized
by ω¼ωSCþ iγSC¼ðk20pv2oscω2

pi=2ω0pÞ1=3½12þ ið ffiffiffi
3

p
=2Þ�.

Here γSC [46] is the growth rate for SCSBS, which
generates very short time scales approaching the ones of
SRS. This allows us to use short pump and seed pulses in
the regime of picoseconds and hundreds of femtoseconds.
As such pulses are generated by chirped pulse amplification
[47,48], the chirp needs to be accounted for in the analysis.
In the following, a chirp α is included in the pump laser
field (as only the total chirp, of a pump and/or seed,
matters), Ep ∝ ei½k0px−ω0tþϕðx;tÞ�, where to linear order the
phase variation is ϕðx; tÞ ¼ α½k0pðx − x0Þ − ω0ðt − t0Þ�2,
generating a time-dependent frequency as ωðx; tÞ ¼
ω0 − ½∂ϕðx; tÞ=∂t�. The complete set of equations describ-
ing the evolution of the three amplitudes and phases takes
the form, for ω0 ¼ ωs0 and in the limit cs ≪ vp;sg ,

ð∂t � vp;sg ∂xÞEp;s ¼∓ μNEs;p sin ϑ;

ð∂t þ vpg∂xÞφp ¼ −μ
NEs

Ep
cos ϑ;

ð∂t − vsg∂xÞφs ¼ −μ
NEp

Es
cosϑ;

∂2
t N − Nð∂tφÞ2 ¼ −ΛEpEs cosϑ;

N∂2
tφþ 2∂tN∂tφ ¼ −ΛEpEs sinϑ; ð2Þ

with μ ¼ ðω2
pe=4ω0Þ and Λ ¼ ð2Ze2=memic2Þ the cou-

pling factors for the field and density perturbations,
respectively. With these definitions, one has γSC ¼
½ð3 ffiffiffi

3
p

=8ÞμΛE2
p�1=3. In Eqs. (2), ϑ ¼ φp − φs þ ϕ − φ is

the global phase. In contrast to the weak coupling SBS and
SRS regimes, or OPA, the optimal phase for coupling in
these equations is not evident a priori, since it appears in a
nonsymmetric way in the transverse wave equations and
ion-acoustic wave equation. However, estimates can be
derived for the phases dynamics at three different stages of
the interaction: in the initial seed growth (SI), in the
“linear” growth phase, when pump depletion is negligible
and seed and density perturbation grow exponentially (SII),
and when the growth saturates and the energy flow is
reversed (SIII). In the following, the above set of equations
is fully solved numerically using explicit finite differencing
and the physics discussed. The equations cover the temporal
evolution of the three main stages of the amplification
process. Figure 1 shows the time evolution for a typical
casewithparameters Ip ¼ 1015 W=cm2, Is ¼ 1013 W=cm2,
and λ ¼ 1 μm. Both pulses are semi-infinite and cross in the
middle of a constant density plasma of 600 μm in length
and n ¼ 0.1 nc. Here the chirp α is set to zero. These values

correspond to γSC ≈ 4.29 × 1012 Hz, or τSC ≡ 1=γSC ¼
233 fs.
SI: Initial growth.—The subsequent analysis uses

φp ¼ φs ¼ 0 at t ¼ 0with no loss of generality. As initially
∂x ¼ 0 and N ¼ 0, one obtains at the crossing point
N ∼ −ΛEpEsðcosϑÞðt2=2Þ. SinceN is defined as a positive
quantity, this implies ϑ ¼ −π ¼ −φ [49]. As a conse-
quence, the equations for the phases of a pump and seed
[see Eqs. (2)] become ∂tφp ¼ μNEs=Ep and
∂tφs ¼ μNEp=Es. Initially, the field amplitudes are taken
as positive. As Ep ≫ Es by construction, one obtains
∂tφs ≫ ∂tφp ≈ 0; i.e., φp will remain zero and ϑ ≈ −π þ
φp − φs < −π [see the phase evolution in Fig. 1(a)]. Still
within the limit of the approximation above, one can derive
from these equations φsðtÞ ¼ 2

9
ffiffi
3

p γ3SCt
3. It follows from the

amplitude equations that ∂tEs > 0 and ∂tEp < 0 and the
energy flows from the pump to the seed [green shaded
region in Fig. 1(b)]. During this stage (SI), the total
phase has the time dependence ϑðx ¼ xcross; tÞ ¼ −π−
ð2=9 ffiffiffi

3
p Þγ3SCt3. This phase relation is valid in the time

interval 0 < tγSC < 2, as can be seen in Fig. 1(b) and as
calculated in the following section.
SII: Exponential growth.—During this linear stage,

pump depletion is still negligible and the seed intensity
grows exponentially. This means that the seed phase
evolves as φs ¼ ðγSC=

ffiffiffi
3

p Þtþ φs0 and the density phase
in the opposite way, such that the total phase remains
approximately constant. This is confirmed by the numerical

FIG. 1. (a) Evolution in time of the phases of the pump (φp,
blue line) and of the seed (−φs, green line) and the density
perturbation (−φ, red line) in units of π. (b) Time evolution of the
total phase ϑ ¼ φp − φs þ ϕ − φ, in units of π. The green
shadowed regions indicate the values of ϑ for which the pump
amplifies the seed; the blue ones correspond to a reversed flow
energy direction. (c) Electric field amplitudes, in V=m, of the
pump (blue line) and of the seed (green line) as a function of time.
The data are taken at xcross ¼ 350 μm, the point where seed and
pump initially collide in the plasma.
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solution. By setting exponential growth for the density and
seed amplitude in Eqs. (2), one can derive that in this
regime the total phase is given by ϑ ¼ − 4

3
π. The time

required to attain this regime is given by setting φsðtÞ (from
SI) equal to ðπ=3Þ:

ti ¼
�
3

ffiffiffi
3

p
π

2γ3SC

�1=3

≈
2

γSC
; ð3Þ

consistent with the numerical results [Fig. 1(b)]. The
system will stay in this regime as long as pump depletion
is negligible. The time texp during which the exponential
regime holds until pump depletion starts and the solution
enters the self-similar regime can be evaluated making the
hypothesis that Es ≈ Ep at the end of the exponential
regime, with Es0 indicating the initial value of the seed
amplitude. This results in a time that is comparable to the
initial growth time:

texp ¼
1

γSC
ln
Ep0

Es0
¼ 1

2

1

γSC
ln
Ip0
Is0

: ð4Þ

The total time necessary to reach pump depletion is then
given as tdepl¼ tiþtexp¼ð1=γSCÞ½2þ1.15log10ðIp0=Is0Þ�≈
ð4.3=γSCÞ for the given simulation parameters, correspond-
ing to the shaded area in Fig. 1. SIII: Saturation.—Once
pump depletion sets in, the phase of the pump starts to
evolve according to the pump phase equation assuming on
the right-hand side exponential growth for the seed and
the density perturbation, with N0 ≡ Nðx ¼ 0; t ¼ tiÞ:

∂tφp ¼ ∂t

�
φp −

4π

3

�
¼ −

N0Es0e2γSCt

Ep0
cos

�
φp −

4π

3

�
:

ð5Þ
Integrating the above equation, one obtains for the pump
phase

φp ≈
1

2

Is0
Ip0

ðe2γSCt − 1Þ: ð6Þ

The characteristic time for the global phase ϑ to vary from
−4π=3 to −π (value at which the coupling is zero) is given
by a variation of φp of π=3. Once ϑ ¼ −π þ ϵ, the energy
flow from the pump to the seed is reversed, leading to the
oscillations behind the principal peak. This is analogous of
the typical π-pulse structure in the weak coupling regime.
This time is of the order of

tφp
≈

1

2γSC
log

�
2π

3

Ip0
Is0

�
: ð7Þ

The time the electric field reaches its maximum is then
given as tEsmax

≈ ti þ tφp
¼ 4.67=γSC. From this time

onwards, the pump no longer provides energy to the seed.

Role of the laser chirp.—A chirp induces a time variation
of the total phase which will affect the coupling and
therefore the efficiency of the energy transfer. Since the
phase time dependence due to strong coupling is not the
same as the one associated with the laser chirp, they cannot
compensate each other at all times. However, the previous
analysis highlights at which stage of the amplification
process the phase could be modified by the laser chirp in
order to improve coupling. The pump phase is negligible
till pump depletion sets in. Pump depletion corresponds to
large energy transfer which is affecting the downshift of the
seed frequency. Optimal coupling would then be achieved
if the chirp is such that the pump phase time derivative
compensates the seed phase derivative at the moment pump
depletion occurs. Assuming t0 ¼ 0 and x0 ¼ xcross, this
leads to the condition φ0

s ¼ γSC=
ffiffiffi
3

p ¼ 2jαjω2
0t at t ¼ tdepl,

and the optimal chirp of the pump (equivalent to an upshift
of the pump by ωSC) is given by

αopt ≈ −
1

2
ffiffiffi
3

p γ2SC
ω2
0

1

2þ 1.15 log10
Ip
Is

: ð8Þ

The corresponding simulation results are shown in Fig. 2(a).
By comparing the chirped case (solid lines) with the standard
one (dashed lines), we observe that the effect of the chirp is
not only to increase the maximum intensity by 35% but also
to bring the pump locally to full depletion resulting in a first
peakwith awell-defined temporal width. If instead the pump
laser is chirped with a positive α (downshifted) in such a
way that the variation of the phase due to the laser chirp at the
beginning of the interaction is of the same order as φs, the
seed phase does not manage to evolve and adapt to allow
the coupling but stays roughly constant and close to zero at all
times. Thus, if one sets ϕ ¼ αω2

0t
2 ∼ ϕs ≈ ðπ=3Þ at t ¼ ti,

one obtains the chirp value which induces quenching:

αq ≈ 0.26
γ2SC
ω2
0

: ð9Þ

FIG. 2. Electric field amplitudes, in V=m, of the pump (blue
lines, propagating to the right) and of the seed (green lines,
propagating to the left) at t ¼ 1.5 ps. Dashed lines are for α ¼ 0.
Solid lines are for (a) α ¼ αopt ≈ −3.3 × 10−7 and (b) α ¼
αq ≈ 1.28 × 10−6.
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Numerical solutions for this case are shown in Fig. 2(b).
As we can see, the seed growth and energy transfer are very
small. Notice that also a negative chirpmuch larger than αopt,
e.g., by an order of magnitude, will reduce the energy
transfer. But in that case still some depletion occurs, and
the result is much less dramatic than with a positive chirp.
Density profile effects.—Starting from Eqs. (2), neglect-

ing the variations of vg, and using the explicit density
profile dependence of μ in the frame of reference of the seed
pulse (y ¼ x − xcross þ vgt, τ ¼ t), one easily obtains the
time evolution of φs:

∂τφsðy; τÞ ¼ μðyÞEp

Es
Nðy; τÞ ¼ 1

2
μðyÞΛE2

p

�
y
vg

�
2

: ð10Þ

For a given profile, Eq. (10) can be integrated by assuming
that the pump and seed initially cross at the right edge of the
plasma (at xcross ¼ 650 μm in the numerical simulations;
see the inset in Fig. 3) by keeping explicitly the spatial
dependence. For, e.g., a linearly growing profile as seen by
the pump (“trr” in Fig. 3), one has, with x0 ¼ x − xcross,

φsðx0; tÞ ¼
4

3
ffiffiffi
3

p γ3SC;max
jx0j
vg

�
t −

jx0j
vg

�
2
�
1 −

1

2

jx0j
L

�
; ð11Þ

where γSC;max is the value for the maximum density in the
profile. The homogeneous case is found by taking the limit
L → ∞, and an analogous expression can be found for the
decreasing profile as seen by the pump. A simple expres-
sion for the time when exponential growth sets in can be
derived by considering the time ti when the seed phase
reaches the value π=3. This time is space dependent. In the
inhomogeneous case, it is useful to find the position closest
to the edge when the seed enters at first the exponential
regime and the correspondent time by minimizing for ti as a
function of space. For a constant profile this gives
jx0ij ≈ 0.7ðvg=γSCÞ. For a linear ramp [with vg=ðLγSCÞ ≪
1] one obtains jx0;trri j ≈ 0.7ðvg=γSCÞ½1 − 0.12ðvg=LγSC;maxÞ�
and jx0;trli j ≈ 1.3ðvg=γSC;maxÞðLγSC;max=vgÞ. It follows that

the case trr is most favorable, as the seed enters earlier the
exponential regime and the self-similar regime. In this
respect, the homogeneous case is better if the density is
equal to the maximum density, but it is less favorable if the
density equals the average of the density ramp (see Fig. 3).
Clearly visible, the case trr attains the highest amplification
(an increase in maximum intensity of 40% with respect to
the constant case and of a factor of ∼3 with respect to trl).
To have an order of magnitude estimate of the effect of a
density gradient, one can define an effective pump chirp
associated to the density gradient. The trr case is similar to
the case of a negatively chirped pump, i.e., α < 0, because
the seed frequency downshift during the exponential
regime is proportional to γSC, which decreases in magni-
tude. An effective chirp can thus be defined by posing in
the middle of the profile (x ¼ −L=2) ωðxÞ − ω0 ¼
−2αω0L=vg ≈ γSC;ave=

ffiffiffi
3

p
, with γSC;ave ¼ γSCðx ¼ L=2Þ.

This leads to α ¼ −ðγSC;avevg=2
ffiffiffi
3

p
ω2
0LÞ. An analogous

calculation for the trl profile gives the same value of α
but with the opposite sign. For the parameter used in the
simulations α≈ ∓ 2.7 × 10−7. For the trr profile this value
is close to the optimal chirp that can be calculated with
Eq. (8) for the case const, αopt ≈ −2.1 × 10−7. Simulations
of amplification in an homogeneous profilewith the effective
chirps just calculated confirm the validity of this estimate, as
the final amplified values become very close to the values
found with the triangular profiles [compare the curve
constð−Þ with the curve trr, and the curve constðþÞ with
the curve trl in Fig. 3], even if there is more of a difference
between the case with a density profile and the case with a
chirp in the trailing pulses. In particular, for the case trr, the
trailing peaks are very weak and the seed amplitude does not
go to zero. A decreasing profile as seen by the seed leads to a
larger amplification, favors the energy exchange mainly in
the first peak, and at the same time allows us to control
unwanted spontaneous instabilities (e.g., SRS) [27].
In conclusion, it was shown that a detailed analysis of the

combined temporal evolution of amplitude and phase in the
strong coupling regime allows us to clarify several issues in
plasma amplification: the directionality of the energy flow
and the role of the chirp originating from the laser pulse and
the plasma profile. A definite relation was established
between the maximum growth rate γSC and the condition
for the laser chirp to allow optimal amplification or to quench
the process. Contrary to SRS-based amplification, SCSBS
requires a preferential gradient of the plasma profile with
respect to the pump propagation direction. Even though this
Letter focused on plasma amplification, the analysis pre-
sented is of relevance in amuchwider sense. On the one side,
it describes in detail for the first time a fundamental regime of
three-wave coupling in plasmas by emphasizing the role of
phases of the involved waves. On the other side, the analysis
is of importance for specific application in the field of
inertial confinement fusion (ICF)such as cross-energy-beam
transfer [4,50] and speckles originating from random phase

FIG. 3. Electric field amplitude of the seed as a function of
space for const, constant density profile at ne=nc ¼ 0.05 and no
chirp; constð−Þ, constant density profile with α ¼ −2.7 × 10−7;
constðþÞ, constant profile with α ¼ þ2.7 × 10−7; and trl and trr,
triangular density profiles with nmax=nc ¼ 0.1.
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plate as the interaction conditions can be in strong coupling.
The chirp of long pulses (nanosecond) is negligible; how-
ever, the contributions from the plasma profile and the
intrinsic interaction conditions remain for ICF.
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