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The transverse stability of the target is crucial for obtaining high quality ion beams using the laser
radiation pressure acceleration (RPA) mechanism. In this Letter, a theoretical model and supporting two-
dimensional (2D) particle-in-cell (PIC) simulations are presented to clarify the physical mechanism of the
transverse instability observed in the RPA process. It is shown that the density ripples of the target foil are
mainly induced by the coupling between the transverse oscillating electrons and the quasistatic ions, a
mechanism similar to the oscillating two stream instability in the inertial confinement fusion research. The
predictions of the mode structure and the growth rates from the theory agree well with the results obtained
from the PIC simulations in various regimes, indicating the model contains the essence of the underlying
physics of the transverse breakup of the target.
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Recently, laser radiation pressure ion acceleration (RPA)
has attracted much attention due to its great potential for
building very compact ion accelerators that can be used in
diverse fields such as medical therapy [1,2], ion radiogra-
phy [3], generation of short-lived isotopes needed in
positron emission tomography [4], injectors for conven-
tional accelerators [5], fast ignition fusion research [6], and
so on. Ideal one dimensional (1D) simulations show
monoenergetic ion acceleration by the RPA process using
a circularly polarized (CP) laser pulse [7–13] with high
energy conversion efficiency. In reality, however, the finite
transverse width of the laser pulse can deform the target
shape, leading to electron heating and energy spectrum
broadening of the accelerated ions [10,11,14]. At the same
time, 2D and 3D simulations also show that transverse
density ripples can grow significantly, leading to some of
the laser energy leaking through and breaking up the target
[10,11,14–19]. This phenomenon shows up even for a laser
pulse of infinite width and uniform intensity profile
[11,19,20]. Various mechanisms have been proposed to
explain the structure of these ripples, such as Rayleigh-
Taylor-like (RT-like) instability [10,11,17,19–23], Weibel-
like instability [16,18], and so on. However, these models
have not been able to give accurate predictions of the mode
structure and its growth rates for a wide range of laser and
plasma parameters.
In this Letter, we show, through theoretical analysis and

particle-in-cell (PIC) simulations, that these surface ripples
are more likely induced by the coupling between the trans-
verse oscillating electrons and the quasistatic ions within the
high density layer formed by the laser radiation pressure
pushing the surface plasma forward in a process often called

“hole boring” (HB) [7,24]. As shown in Fig. 1(a), during this
HBprocess, soon after the laser impinges on the front surface
of the target, a dynamic equilibrium between the laser
pressure and the electrostatic field within the plasma is built,
forming a quasistatic high density structure comoving with
the laser pulse [7]. Within this layer, the CP laser field
oscillates at the laser frequency along both transverse
directions, albeit π=2 radians out of phase. A very small
transverse ion density fluctuation can couple with the
oscillating laser field to excite an electron oscillation. This
oscillation, in turn, can couple with the oscillating laser field
to generate a ponderomotive force with spatial variation,
driving the electrons to enhance the ion density fluctuation.
The physical picture of this process is illustrated in Fig. 1(b).
It is, indeed, very similar to the oscillating two stream
instability extensively studied in the inertial confinement
fusion research [25–27]. However, there are significant

FIG. 1. (a) The schematic model of hole boring process by
radiation pressure. (b) The physical picture of transverse insta-
bility within the high density layer. The z and y axis represent the
longitudinal and transverse directions, respectively. The ni1 and
Ey1 represent the ion density and the transverse electric field
fluctuations, respectively. fp represents the ponderomotive force.
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differences. First, the oscillating laser field only exists within
the narrow layer formed by the laser pressure, and its
amplitude is determined by the boundary conditions at the
interface. And second, in the case of RPA, the laser is
relativistically intense, with the normalized vector potential
a0 on the order of 1, much larger than those studied in the
previously considered oscillating two stream instability.
First, we derive a 1D theoretical model of this instability

based on the above physical picture, and then verify it using
2D PIC simulations. For simplicity, a relativistic cold two-
fluid plasma description is adopted, and only electrostatic
perturbations along the laser electric field are considered.We
note that a full treatment including both electrostatic (ES) and
electromagnetic modes has been carried out and will be
published in a future longer paper, which confirms that the
ES mode dominates the RPA ion acceleration process.
In the comoving frame of the high density layer, the cold

fluid equations for electrons and protons in the transverse
direction are

∂nði;eÞ
∂t þ ∂nði;eÞvði;eÞy

∂y ¼ 0; ð1aÞ

∂Pði;eÞy
∂t þ vði;eÞy

∂Pði;eÞy
∂y ¼ qði;eÞEy; ð1bÞ

∂Ey

∂y ¼ 4πðqini − eneÞ; ð1cÞ

where y is the transverse direction; v and P are the velocity
and momentum, respectively. For simplicity, we assume the
target is fairly flat and the density fluctuation only depends
on (y, t). This assumption is reasonable as long as the
density perturbation is not too large to significantly distort
the foil, which is confirmed in our PIC simulations. This is
in contrast to the RT-like instability models [20,22,23],

which assume that the surface is significantly distorted, but
still with uniform density.
To linearize the fluid equations, all the quantities can be

decomposed as a stationary part plus a first order quantity
and ions are assumed nonrelativistic for simplicity, such as
vey ¼ ve0 þ ve1, Pey¼Pe0þPe1, viy¼vi0þvi1ðvi0¼0Þ,
ne ¼ n0 þ ne1, ni ¼ n0 þ ni1, Ey ¼ Ey0 þ Ey1, where
Ey0 ¼ E0 cos ðω0tþ ϕÞ, and Pe0 ¼ Pos sin ðω0tþ ϕÞ. By
using the standard Fourier analysis [assuming all first order
quantities have the form of expðiky − ωtÞ], one can get the
following equations after eliminating ni1, vi1, Ey1:

− iωne1ðωÞ −
vosk
2

½ne1ðωþ ω0Þ
− ne1ðω − ω0Þ� þ ikn0κPe1ðωÞ ¼ 0; ð2aÞ

− iωPe1ðωÞ −
vosk
2

½Pe1ðωþ ω0Þ
− Pe1ðω − ω0Þ� − ϵðωÞne1ðωÞ ¼ 0; ð2bÞ

where vos ¼ Pos=γ0 is the electron quiver velocity ampli-
tude in the laser electric field, γ0 is the electron’s zero-order
relativistic factor. ω0 and ωpi are the laser frequency
and ion plasma frequency, respectively, and ϵðωÞ ¼
−ið4π=kÞðω2=ω2

pi − ω2Þ, κ ¼ 2 − v2os=2γ0.
These two equations show the relationship between ne1

and Pe1 at ω and ω� ω0. By replacing ω with ω� ω0, one
can obtain six equations describing the relationship among
ω, ω� ω0, and ω� 2ω0. However, to obtain a close
dispersion relation, further assumption is needed. Since
the dynamics involves ion density evolution, which is
typically on a much slower time scale than the laser
oscillation, we may drop all the fast time scale terms at
ω� 2ω0. Therefore, we now have six equations for six
quantities (ne1, Pe1 at ω and ω� ω0), and this can be casted
into a matrix form as follows:

0
BBBBBBBBB@

−iω −vosk=2 vosk=2 ikn0κ 0 0

vosk=2 −iðωþ ω0Þ 0 0 ikn0κ

−vosk=2 0 −iðω − ω0Þ 0 0 ikn0κ

ϵðωÞ 0 0 −iω −vosk=2 vosk=2

0 i 4πk 0 vosk=2 −iðωþ ω0Þ 0

0 0 i 4πk −vosk=2 0 −iðω − ω0Þ

1
CCCCCCCCCA

0
BBBBBBBBB@

ne1ðωÞ
ne1ðωþ ω0Þ
ne1ðω − ω0Þ

Pe1ðωÞ
Pe1ðωþ ω0Þ
Pe1ðω − ω0Þ

1
CCCCCCCCCA

¼ ~0: ð3Þ

The dispersion relation can be obtained by taking the
determinant of the matrix equal to zero. To get the growth
rate, we solve the dispersion equation for each real k value,
and obtain the imaginary part of ω [ImðωÞ]. The wave
number for the modewith the maximal growth rate (km) can

be numerically calculated by taking the maximal value
of jImðωÞj.
Figure 2 shows an example. We take γ0 ¼ 1.5, ωpe ¼

6ω0, ωpi ¼ 0.13ω0, and vos ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=γ20

p
. The relation

betweenk and ImðωÞ is presented inFig. 2 andkm¼7.2ω0=c.
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The dispersion relation can be simplified significantly
for a0 < 1 by taking κ ≈ 1 for nonrelativistic electrons and,
also, keeping the dominant terms

ω4ðξ4 þ 12ω4
peÞ − ω2ω2

peðξ2 − 2ω2
peÞ2

þ ξ2ω2
peω

2
piðξ2 − 2ω2

pe þ 2ω2
0Þ ¼ 0; ð4Þ

where ξ ¼ kvos and ωpe, ωpi are the electron and ion
plasma frequencies of the high density layer at the foil’s
front. km can be directly solved from Eq. (4)

kmvos ≈
ffiffiffi
2

p
ωpe: ð5Þ

A simple estimation of ωpe can be obtained for a0 < 1 by
assuming a uniform density profile and charge neutrality
(i.e., ne ≈ ni) within the high density layer. Then the
electrostatic field Es can be described as Es ¼
Es0ðls − zÞ=ls, (0 ≤ z ≤ ls), where Es0 is the maximum
longitudinal electrostatic field, and ls is the thickness of this
layer. In the hole boring process, after balance is built, the
equilibrium between the electrostatic force and the radia-
tion pressure within the layer can be written as 1

2
Es0elsne ¼

2I=c [10], where ne is the averaged ion density within
the layer. In the comoving frame, ions are moving into this
area with vb and satisfy 1

2
miv2b ¼ 1

2
Es0ls, where vb is the

hole boring velocity. Meanwhile, ions are also moving
out of this layer with a velocity of vb. Therefore, during
δt, the momentum conservation relation leads to
minp0vbδtð2vbÞ ¼ ð2I=cÞδt [7], where np0 is the initial
plasma density. Combining these three equations, we get
ne ¼ ni ¼ 4np0. This simple relation can be readily veri-
fied by PIC simulations.
On the other hand, by applying the Fresnel-like boun-

dary condition and neglecting the vb × B effect in the
y direction (vb ≪ c), we get vos=c ≈ 2a0ðω0=ωpeÞ. With
the new form of vos and ωpe, Eq. (5) can be written in a
form easier for direct comparison with PIC simulations

km ≈ 2
ffiffiffi
2

p np0
a0nc

½ω0=c�; ð6Þ

where nc ¼ meω
2
0=4πe

2 is the critical density. One can see
that km has a very simple dependence on a0 and np0.
To verify the above theory, we performed a series of 2D

PIC simulations using the code OSIRIS [28]. In these
simulations, a CP laser driver with a transverse uniform
profile is used. The laser has a flattop longitudinal profile
and propagates in the z direction. High resolutions are used
in both directions (Δy ¼ Δz ¼ 0.002cω−1

0 ), with 16 par-
ticles in each cell. The foil is a pure hydrogen plasma with a
step density profile.
Figures 3(a) and 3(b) show an example. We begin with

a0 ¼ 0.2 and np0 ¼ 10nc. In Fig. 3(a), one can see density
ripples are induced in the high density layer irradiated by
the laser pulse. A lineout corresponding with the red
dotted line of Fig. 3(a) is presented, showing the periodic
density structures appearing during the interaction proc-
ess. Figure 3(b) is the 2D Fourier transformation of
Fig. 3(a), and a lineout showing the distribution of ky
at kz ¼ 0 corresponding with the green dotted line is also
presented. It clearly indicates that the instability mode
number km is about 125 ω0=c, which has good agreement
with the estimated value kest (133 ω0=c) from Eq. (6)
and numerical value knum (128 ω0=c) from Eq. (3). In
Fig. 3(c), we plot the relation between km and a0 by fixing
the plasma density (np0 ¼ 10nc). Three values of km [km
obtained from PIC simulation, from direct numerical
solution of Eq. (3), and from Eq. (6)] are used for
comparison. One can see that a very good agreement is
obtained. In Fig. 3(d), we also plot the relation between km
and np0 by fixing a0 ¼ 0.2. One can see equally good
agreement between the three values of km.
Equation (4) can also give a simple expression of the

growth rate γm0 at km,

4 6 8 10
0

0.05

0.1

0.15

0.2

k [ω
0
/c]

Im
(ω

) 
[ω

0]

FIG. 2. The relationship between k and ImðωÞ for the case of
γ0 ¼ 1.5, ωpe ¼ 6ω0, ωpi ¼ 0.13ω0.

(a) (b)

(d)(c)

FIG. 3. (a) In the case of a0 ¼ 0.2, np0 ¼ 10nc, the proton
density with ripples in the front high density layer and its lineout
distribution at z ¼ 10.38 c=ω0 (the red dotted line). (b) the FFT
of the proton density and its lineout distribution at kz ¼ 0 (the
green dotted line). (c) The relationship between km and a0 when
np0 ¼ 10nc. (d) The relationship between km and np0 when
a0 ¼ 0.2. ksim, kest, and knum are obtained from PIC simulations,
from direct numerical solutions of Eq. (3), and from Eq. (6),
respectively.
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γm0 ≈ 2ωpi: ð7Þ

We performed a series of 2D simulations with a large
range of plasma parameters similar to Fig. 3 to confirm our
analysis of the growth rates.
Figure 4(a) shows the relation between γm and a0 at

np0 ¼ 10nc. It is found that though γm is varying with a0, it
is still on the same order ofωpi (in the range ofωpi ∼ 2ωpi),
which has some agreement with Eq. (7). The weak relation
between γm and a0 mainly comes from the fact that, in the
comoving frame, protons are moving in and out of the high
density layer consecutively, and this area is not stationary.
If the longitudinal flow is quite slow, the expression of
growth rate γm can also be evaluated. We assume that at
t ¼ t0, the ion density fluctuation is fðt0Þ ¼ δn0ls, where ls
is the length of the high density layer, and δn0 is the ion
density fluctuation at t ¼ t0. Then, at t ¼ t0 þ δt, the
fluctuation becomes as fðt0 þ δtÞ ¼ δn0eγm0δtðls − vbδtÞ.
The growth rate can be calculated as eγmðt0Þδt ¼
fðt0 þ δtÞ=fðt0Þ, where vb is the hole boring velocity of
ions moving in or out of this region. Based on the analysis
above, it is straightforward to obtain

γm ≈ 2ωpi − 2ω0iηa0; ð8Þ

where ω0i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me=Mi

p
ω0 is the critical ion plasma

frequency, and η is a coefficient. Eq. (8) shows that γm
has a weakly linear dependence on a0, which has quite
good agreement with Fig. 4(a) for a0 < 0.7; and η ≈ 4.8
can be evaluated from simulations. Equation (8) is valid for
the initial several 1=ωpi, since, as the instability grows,
more other effects like electron heating and radiation
pressure transverse nonuniformity will get involved.
As Fig. 4(b) shows, if we fix a0 ¼ 0.2, the values of

growth rates from simulations also have good agreement
with that from Eq. (8).
For a0 > 1, the relativistic factor of electrons needs to be

considered. Similar to Eq. (6), a simple expression of km
can also be approximately obtained as

km ≈
ffiffiffi
2

p ωpe

vos

ffiffiffi
κ

p ¼ ωpeffiffiffiffiffi
γ0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ20 þ 1

γ20 − 1

s
; ð9Þ

where γ0 is the electron’s zero-order quiver energy.
Equation (9) is valid both for thick foil cases (hole boring)
[7,24] and thin foil cases (light sail) [8–11,29,30]. However,
the expressions of ωpe and γ0 can not be easily obtained
directly. Instead, we use the estimations from simulations. To
check the validity of Eq. (9) for a0 > 1, we performed 2D
PIC simulations for two different scenarios (thick foil case
and thin foil case) and plotted the typical results in Figs. 5(a)
and 5(b). In Fig. 5(a), a circularly polarized laser (a0 ¼ 5) is
used to interact with a thick target (thickness d ¼ 6c=ω0,
initial density 30 nc). The mode wave number in the
simulation is 11.2 ω0=c, which is similar to the estimated
value14.5 ω0=c fromEq. (9) and numerical value14.1 ω0=c
from Eq. (3). In Fig. 5(b), a circularly polarized laser
(a0 ¼ 2.5) is used to interact with a thin target (thickness
d ¼ 0.4 c=ω0, initial density 10 nc). The mode wave num-
ber in the simulation is 5.6 ω0=c, which is similar to the
estimated value 4.5 ω0=c from Eq. (9) and the numerical
value 4.8 ω0=c from Eq. (3).
In all the above simulations, uniform laser intensity

profiles are used for the exact comparison with the
theoretical model. In more realistic cases, the laser typically
has nonuniform intensity profiles like Gaussian [e.g.,
expð−r2=w2

0Þ]. To confirm the usability of the theoretical
expressions [Eqs. (3) and (9)], we also performed simu-
lations and plotted the typical results in Figs. 5(c) and 5(d).

(a) (b)

FIG. 4. (a) The relationship between γm and a0 at np0 ¼ 10nc.
(b) The relationship between γm and np0 at a0 ¼ 0.2. γest and γsim
are the estimated and simulation wave numbers of ion density
ripples, respectively.

FIG. 5. (a)–(b) for a0 > 1, proton densities of two different
scenarios [thick foil case (a) and thin foil case (b)] are presented.
(c)–(d) laser pulses with transverse Gaussian profile are used to
interact with foils to confirm the usability of the theoretical
expressions. ksim, kest, and knum are obtained from PIC simu-
lations, from direct numerical solutions of Eq. (3), and from
Eq. (9), respectively. d represents the thickness of the target.
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For a0 < 1, in Fig. 5(c), a CP laser pulse with a0 ¼ 0.8
and a radius (w0 ¼ 20 c=ω0) is used to interact with a
thin foil (thickness 1.3 c=ω0, initial density np0 ¼ 10nc).
The mode wave number in the simulation is 31.4 ω0=c,
which is similar to the estimated value 34.1 ω0=c from
Eq. (9) and the numerical value 33.2 ω0=c from Eq. (3).
For a0 > 1, in Fig. 5(d), a CP laser pulse with a0 ¼ 5 and a
radius (w0 ¼ 40 c=ω0) is used to interact with a thick foil
(thickness 6 c=ω0, initial density np0 ¼ 30nc). The mode
wave number in the simulation is 11.8 ω0=c, which is
similar to the estimated value 14.5 ω0=c from Eq. (9) and
the numerical value 14.1 ω0=c from Eq. (3).
In conclusion, we have demonstrated that the surface

ripples in the RPA process are mainly induced by the
coupling between fast oscillating electrons and quasistatic
ions within the high density layer formed by the laser
pressure. A one-dimensional model is presented here to
predict the mode structure and its growth rate, which has
good agreement with 2D PIC simulations at the early
exponential growth stage before the target is destroyed. In
the later stage, significant distortion of the target and
electron heating effects start to play key roles in the further
(nonlinear) growth of the instability [18,20,21,23].
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