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We discuss the generation of subwavelength optical barriers on the scale of tens of nanometers, as
conservative optical potentials for cold atoms. These arise from nonadiabatic corrections to Born-
Oppenheimer potentials from dressed “dark states” in atomic A configurations. We illustrate the concepts
with a double layer potential for atoms obtained from inserting an optical subwavelength barrier into a well
generated by an off-resonant optical lattice, and discuss bound states of pairs of atoms interacting via
magnetic dipolar interactions. The subwavelength optical barriers represent an optical “Kronig-Penney”
potential. We present a detailed study of the band structure in optical Kronig-Penney potentials, including
decoherence from spontaneous emission and atom loss to open “bright” channels.
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Optical potentials generated by laser light are a funda-
mental tool to manipulate the motion of cold atoms with both
conservative and dissipative forces [1,2]. Paradigmatic
examples of conservative optical potentials are optical dipole
traps from a focused far off-resonant light beam, or optical
lattices (OLs) generated by an off-resonant standing laser
wave, as the basis of the ongoing experimental effort to
realize atomic Hubbard models [3]. The underlying physical
mechanism is the second-order ac Stark shift of an electronic
atomic level, which is proportional to the light intensity.
Optical potential landscapes, which can be designed, will
thus reflect and be limited by the achievable spatial variation
of the light intensity. For light in the far field, i.e., for optical
trapping far away from surfaces (compare Refs. [4-8]), this
spatial resolution will thus be given essentially by the
wavelength of the light . In the quest to realize free-space
optical subwavelength structures for atoms [9-15] we will
describe and study below a family of conservative optical
potentials, which arise as nonadiabatic corrections to dark
states (DSs) in atomic A-type configurations [16,17], build-
ing on the strong nonlinear atomic response to the driving
lasers. The present scheme should allow the realization of
optical barriers for atoms on the scale of tens of nanometers,
and in combination with traditional optical potentials and
lattices the formation of a complex “nanoscale” optical
landscape for atoms. Our discussion should be of particular
interest for realizing many-atom quantum dynamics as a
strongly interacting many-body systems, where atomic
energy scales and interactions, such as magnetic dipolar
couplings [18-22], are strongly enhanced by subwavelength
distances.

To illustrate the nanoscale optical potentials we can
construct, we show in Fig. 1 a setup where a subwavelength
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barrier of width £ is inserted into a potential well. This
potential well can be created, for example, with a (standard)
off-resonant OL V (x) = Vg sin?(k,x) ~ Vo(k;x)? with
Ap =2x/k; the wavelength of the trapping laser, and we
denote its ground state size by a;. Thus, our aim is to create
a double well potential for atoms on the subwavelength
scale £ < a; < A, /2. By adjusting the height, and by
displacing the subwavelength barrier we can control the
tunnel coupling between the wells, strongly enhanced
relative to the standard OL with lattice period 4; /2. In a
3D (2D) setup this realizes a double layer (wire), with
subwavelength separation. Loading magnetic atoms or
polar molecules with dipolar interactions into these struc-
tures, we benefit from the strongly enhanced energy scales
for interlayer (wire) interactions.

We propose and analyze below the physical realization
of such a setup, and we will mainly focus on a 1D model
considering atomic motion along x. The subwavelength
barrier is obtained by choosing an atomic A transition with
two long-lived ground (spin) states |g;) = |{), |9,) = |1)
[Fig. 1(b)] [23,24], which are coupled by a Raman
transition. The first leg of the Raman coupling is a strong
control laser with Rabi frequency Q.(x) = Q. sin(kx) as a
standing wave with wavelength A = 2z /k along x, and the
second is a weak probe laser with Rabi frequency Q, with
propagation direction perpendicular to the axis x [25]. We
denote the ratio of Rabi frequencies as e=Q,/Q, < 1.
The lasers are tuned to satisfy the Raman resonance
condition, while the detuning A from the excited state
|e) can be near or off resonant. The relevant Hamiltonian is
H = —h*3?/2m + H,(x) [23], as a sum of the kinetic
energy and the internal atomic Hamiltonian
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FIG. 1. (a) A double well potential for atoms is created by
inserting an optical subwavelength barrier V,,,(x) with width £
into a potential well generated with an off-resonant OL V (x)
with lattice period A; /2, and size of the vibrational ground state
ar, such that £ < a; < A, /2. The subwavelength barrier is
obtained with an atomic A-system supporting a “dark state” as
superposition of the two atomic ground states |g;) and |g,) (b),
where a resonant Raman coupling from a strong control field
Q.(x) = Q,sin(kx) (k=2z/4) and a weak probe field Q,
connects the two ground states (see text).
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written in a rotating frame, and with I' the spontaneous
decay rate of |e). We can add to the above Hamiltonian a
trapping potential for the ground states V(x) to generate the
well of Fig. 1. This is realized, e.g., as a 1D off-resonant
lattice V; (x) = V sin?(k, x) with an effective k;, = 27/1,,
ie, V(x) = V(%)Y _12l9:) (g This far off-resonant OL
potential acts equally on both ground states, and thus
preserves the resonance Raman condition independent of x.

We are interested in the regime of slow atomic motion,
where the kinetic energy [and trapping potential V(x)] are
small relative to the energy scales set by H . In the spirit of
the Born-Oppenheimer (BO) approximation [26-29] we
diagonalize H,(x)|E,(x)) = E,(x)|E;(x)) (6 =0,%) to
obtain position dependent dressed energies,

Boo) = 0.E.(0) =5 | <& £ /05 + 020 + 2],

with A = A + i(I'/2), playing the role of adiabatic BO
potentials for the atomic motion. Such a A configuration
supports an atomic DS Ej, = 0 as a linear combination of
the ground states, |Ey(x)) = —cosa(x)|g;) + sina(x)|g,)
with a(x) = arctan[Q,(x)/Q,], which for an atom at a
given position x (at rest) is decoupled from the exciting
Raman beams. The identity of this DS changes in space on
a subwavelength scale [10,24]: in regions |Q.(x)| > Q,
we have |Ej) ~ |g,), while |Q,(x)| < ), defines a region
¢ =el/2x < A with |Ey) ~ |g;) and thus a spatial sub-
wavelength spin structure [bottom of Fig. 1(a)].

An atom prepared in the DS, and moving slowly in space
will, in accordance with an adiabaticity requirement [30],
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FIG.2. (a)BO potentials Ey(x) = 0 (black line) and E., (x) [red
line, with line width indicating ImE, (x)] for DS and BS,
respectively. Parameters: Q, = A = 1.7 x 10*E;, ¢ = 0.16,
I' = 5 x 10?Ey. (b) Zoom showing V,,,, (x) (black) and the lower
part of E(x) (red). (c) Lowest Bloch bands e, , for V,,(x) for
Brillouin zone |¢| < /4 (see text); € = 0.1. (d),(e) Zooms of the
lowest Bloch band of the DS lattice, including couplings to BSs
for e = 0.1, Q, =2 x 10°Eg, I' = 10°E; (d), and " = 10Ey
(e) (see text and Ref. [32]). Black lines indicate Ree, 4, and red
shadings the widths Ime, , = —fy, ,/2.

remain in this DS, and the internal state will change its
internal spin identity according to |Ey(x)) on the scale
¢ < A. Correspondingly, there will be nonadiabatic cor-
rections to this motion. As shown below, these nonadiabatic
corrections take on the form of a subwavelength optical
barrier representing a conservative potential

e?cos? (kx)

h2
T 2m [€? + sin?(kx)]>’

2m (8xa)2 = ER

Via(x) (1)

with Ep = h?k?/2m the recoil energy and atomic mass .
The effective 1D Hamiltonian for the atomic motion is
thus h = —~29%/2m + V(x) + V,.(x). In Fig. 1(a) this
realizes the subwavelength barrier, where the vibrational
ground state of the OL potential V; (x) of size a; is split
into a double well for Z < a;. We note that V,,(x), apart
from the overall scale Eg, depends only on e = Q,,/Q,. For
e < 1, V,,(x) is a sequence of potential hills with spacing
2/2, width ¢ =el/2x < A/2, and height Eg/e* > Eg
[cf. Fig. 2(b)], and has for ¢ < 1 a form reminiscent of
a repulsive Kronig-Penney &-like comb V,,(x) —
> . ErA/(4€)6(x — nA/2) [31]. For Raman beams derived
from the same laser source this potential is insensitive to
both intensity and phase fluctuations. We emphasize that
the mechanism behind Eq. (1) is related to nonadiabatic
corrections, as described by Olshanii and Dum [27], and is
conceptually different from schemes relying on a substruc-
turing ac Stark based OLs by radio frequency or laser
fields [9,11], or in combination with DSs [10]. Figure 2(a)
is a plot of the BO potentials E, . (x) for blue detuning
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Q=A>0 and ¢=0.16 with parameters chosen to
illustrate the main features (with similar results for red
detuning). For A > Q. ,, the bright state (BS) |E, (x)) —
sina(x)|g;) + cosa(x)|g,) corresponds to the standard OL
E,(x) = (n/4)[Q5 + Q2(x)]/[A + (i/2)T] as a second
order Stark shift [cf. Fig. 2(a)].

To quantify the above discussion and assess the validity of
the BO approximation we present now a derivation and
analysis of optical potentials arising from nonadiabatic
corrections to atomic motion, and effects of spontaneous
emission (due to admixture of bright channels). Expanding
the atomic wave function in the BO channels, |¥(x)) =
>, U, (x)|E,(x)), results in the coupled channel equation
for W, (x) [27,29]. The corresponding Hamiltonian is
H = [-ihd, — A(x)]?/2m + V(x), where the diagonal
matrix V,,(x) = E,(x)d,, contains BO potentials (see
Fig. 2). Nonadiabatic processes, coupling the BO channels,
arise from the spatial variation of the internal eigenstates,
—ih0,|E,(x)) = >, |E,(x))A,s(x) with scaling A, , ~ /¢
(see Ref. [32]).

We are interested in the regime of approximate adiabatic
decoupling of BO channels. This requires that the separa-
tions between DS and BS are larger than the channel
couplings. For the DS, the lowest order contribution from
the A? term gives rise to the nonadiabatic (conservative)
potential (1) [see Fig. 2(b)], with consistency requirement
V,a(x) < min |E. (x)|. We discuss this by setting the
external potential V(x) = V;(x) =0, and studying the
1D band structure for the A scheme of Fig. 1(b). We
compare below the results for (i) the single-channel DS
potential V,,(x) with (ii) the exact diagonalization of
the (non-Hermitian) Hamiltonian H, using a Bloch ansatz
U(x) = eu, ,(x) with quasimomentum g to obtain the
(complex) energies ¢, ,. In the first case we have a unit cell
A/2 and thus a Brillouin zone |g| < 27/, while H has
periodicity 4, and, thus, |g| < z/A, so that the bands of
the first case appear as “folded back” in the second case
[see Figs. 2(c), 2(d), 2(e)].

For the DS potential V,,(x) the band structure is for
€ < 1 analogous to that of a Kronig-Penney model [31].
For the lowest Bloch bands n = 1, 2, ... in the DS channel
0 we obtain (see Ref. [32])

4 2
en?;zERnZ{Hﬂ—‘;f[1+(—1>”COS%} <7
(2)

in very good quantitative agreement with the band structure
obtained from H. These bands have narrow width ~e,
corresponding to a hopping amplitude J,, = 2Egen?/n? in
the terminology of the tight-binding Hubbard model [3].
The energy offset of these bands Egn? is close to the levels
in the infinitely deep rectangular well of the width A/2, with
anharmonic band spacing (independent of ¢, and thus the

height of the potential). The Wannier functions associated
with these bands resemble the eigenfunctions of a box
potential. This is in marked contrast to the band structure in
a V(x) = Vysin?(kx) OL, where energies of low lying
bands are harmonic oscillatorlike, and the Wannier
functions are strongly localized a; <« 1/2 (Lamb-Dicke
regime) [3]. The spectroscopy of these bands could be
investigated with time of flight, and by modulating the
lattice. A discussion of this and of loading the lowest
Bloch band can be found in Ref. [32].

For the DS channel 0, the nonadiabatic couplings to
the bright (dissipative) BO channels £ result in a small
correction e, , to the dispersion, which contains a imagi-
nary part Iméde,, = —hy,,/2 <0, signaling decay of
atoms in the Bloch band. Figures 2(d) and 2(e) indicate
the width of the lowest Bloch band y, ,, by a red-shaded
region around the dispersion relation €, ,, as obtained from
a numerical solution of the coupled channel equations.
The parameters are chosen to illustrate the limits of a
“large” and “small” decay width I" (see Ref. [32]). We note
that in both cases y; , < J;; i.e., dissipative corrections
are typically very small, while y, , shows a nontrivial ¢
dependence. In Fig. 2(d) we can parametrize

2
VEEC)

(see Ref. [32]), where for the lowest Bloch band the decay
increases with ¢ [Fig. 2(d)]—something we expect from a
STIRAP scenario [17], where faster atomic motion leads to
a stronger violation of adiabaticity and thus depopulation of
the DS. In contrast, Fig. 2(e) shows the appearance of
resonances in q: as discussed in Ref. [32] these appear
when for a given ¢ = ¢, the energies in the dark channel 0
becomes energetically degenerate with energies in the

Yig ™ YlSinz(MI/Zk)v

bright open channel —, e,gl),. ~ Reequq)* s
I" relative to the strength of the nonadiabatic couplings
these resonances get successively washed out, transitioning
to the generic behavior of Fig. 2(d). We refer to Ref. [32]
for a detailed discussion of y, ,, and, in particular, scaling
with system parameters.

Returning to Fig. 1(a) we point out that the above
discussion can be generalized to DSs in 2D and 3D
configurations. Thus, we can replace Q.(x) — Q.(x,y)
and V (x) — V,(x,y), while preserving the existence of a
DS |Ey(x,y)), allowing us to add a (standard) OL for
motion in the y direction, or the realization of an atomic
double wire with separation Z.

We now turn to a study of quantum many-body physics,
and discuss as an illustrative example the motion of
two atoms confined in the subwavelength structure of
Fig. 1, and interacting via magnetic dipolar interactions.
The validity of (1) in a many-body Schrodinger equation
will be discussed below. We assume that the two-body
physics can be modeled by the external motion of each

With increasing
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FIG. 3. (a) Position-dependent dipole moment d(x)/d, for
—d, = d, = d. Molecules exist as bound states of two atoms
due to dipolar attraction at the interfaces, where d(x) changes
sign. (b) Bound state energies £y, and (c) hopping amplitude J
of molecules between the two interfaces for ¢ = 0.1 in units of
ER,)/’ = flz/szz = ER/EZ.

atom governed by V; (x) 4+ V,,,(x), while the internal state
is the BO channel |Ey(x)), with the unique feature of
an x-dependent internal state [see bottom of Fig. 1(a)]. We
consider two ground states (spins) with associated mag-
netic dipole moments d,;, d,, oriented according to a
quantization axis defined by an external magnetic field,
so that each atom acquires an effective position-dependent
dipole moment, d(x)=d, cos’a(x)+d,sin’a(x). Figure 3(a)
is a plot of this dipole moment for a choice of states with
—d, = d, = d, with the spatial variation of |Ey(x)) now
imprinted as a variation of d(x) on the scale #. The magnetic
(dipolar) interactions between the atoms is thus modulated
by this spatial dependence. There are two generic situations,
the first (i) with the dipole moments oriented along x,
and the second (ii) with dipole oriented perpendicular. In the
first case, two atoms on opposite sides of the barrier in the
double layer attract each other in a head-to-tail configuration.
For the case of electric dipole moments as realized with
polar molecules, stored in a 2D double layer from an OL
with A/2 separation, the formation of bound states as
building blocks for quantum phases has been studied
[46-49]. Here we note that this physics of strong interactions
becomes accessible when the dipolar length a,, = md?*/h>
[18,19], characterizing the dipolar interactions [50], is
comparable to the average distance between the atoms
(here ~a; with £ < a; < ;).

Instead, we focus here on physics of perpendicular
dipole moments (ii) at the inferface between the spin
structure, |g;) <> |g»), as shown in Fig. 3. If the dipoles
are oriented perpendicular to x, atoms on opposite sites of
the interface attract each other, thus allowing for the
formation of a bound state as a “domain wall” molecule.
The situation is illustrated by the following two-particle
Hamiltonian (see Ref. [32] for detailed description):

H= Z {_ no;, d(x1)d(x>)

=12 2m Xy —xo*

+ Vna (xi) + (4)

with d(x) modulated on the scale £, assuming strong
confinement £, < ¢ in the transverse plane (and setting

FIG. 4.

(a) Atomic zigzag (double-A) configuration with Q.. (x)
strong standing waves and Q, weak probe beams, and (b) the
corresponding nonadiabatic optical potentials on the subwave-
length scale # < 4 for an atomic angular momentum J, = J, = J
transition, where the Zeeman levels are coupled by circularly
polarized laser fields. With increasing J a double barrier structure
develops.

V; = 0). According to Fig. 3 we find that the requirement
for a bound state of size £ to form is ap /¢ ~ 6 [51-53],
where the domain wall molecules sit on the slope of the
nonadiabatic potential. These molecules exist at both the
left and right interfaces +¢, and can hop between them,
realizing a double layer with subwavelength distance. The
(potentially large) amplitude J,,;; for hopping is reflected as
a hybridization of molecular orbitals on the left and right
interfaces, seen in Fig. 3 as a splitting between the even and
odd states. We can also obtain trimers as bound states of
three atoms, where two spin-up dipoles sit to the left (right)
of = (4+¢) and a spin-down in the middle.

From an atomic physics point of view, a A scheme and a
nonadiabatic DS potential can be realized with both alkali
and alkaline earth atoms, where two ground states are
chosen from a Zeeman or hyperfine manifold. Remarkably,
these nonadiabatic potentials exist, on the level of single-
atom physics, as conservative optical potentials even on
resonance (A = 0) and for short lived excited states (but
still Q. , > T'). In going off resonance, the nonadiabatic
conservative potential will persist albeit with an increasing
requirement for laser power to satisfy the adiabaticity
requirement, in particular V,,,(0) < (2/4)Q3/A (Q, < A)
for A > 0 as shown in Figs. 2(a) and 2(b). With increasing
detuning, the three-level model will eventually break down,
and the coupling to several excited states may become
important. This situation parallels the challenges in real-
izing spin-dependent OLs [54-57], and spin-orbit coupling
in A systems with Alkali atoms [58-65], where the
electronic spin-flip implicit in coupling two ground states
via Raman transition is suppressed for detunings larger
than the fine structure splitting of the excited state. We note,
however, the encouraging prospects provided by lantha-
nides in realizing spin-orbit couplings [19,66,67] and
synthetic gauge fields [68,69]. In a many-atom context,
going to off-resonant laser excitation is a necessary require-
ment to suppress inelastic collision channels (involving
laser excitation at the Condon point), and we expect a
similar requirement here. As discussed in the context of
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polar molecules, long range repulsive dipolar interactions
in combination with low-dimensional trapping (1D or 2D)
can provide a shield in atom-atom collisions at low energies
[70], thus suppressing inelastic loss and instabilities from
short range physics [71].

To conclude, A-type configurations with nonadiabatic
DS optical potentials are readily generalized to zigzag
configurations as in Fig. 4(a) (see also Ref. [32]). This
yields a double-peaked structure on the scale £ as in
Fig. 4(b). These ideas enable writing complex spatial spin
patterns [10] and associated landscapes of nonadiabatic
potentials. On the many-atom level spatially varying
internal structures result in position-dependent interparticle
interactions. This provides a novel setting for many-body
atomic systems, illustrated here for magnetic dipole-dipole
interactions, and poses interesting questions as quantum
chemistry in atomic collisions at subwavelength distances.
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Note added.—Recently we have become aware of Ref. [72]
by Jendrzejewski et al., which overlaps with the first part of
our Letter.
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