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Assigning a chaos index for dynamics of generic quantum field theories is a challenging problem
because the notion of a Lyapunov exponent, which is useful for singling out chaotic behavior, works only in
classical systems. We address the issue by using the AdS=CFT correspondence, as the large Nc limit
provides a classicalization (other than the standard ℏ → 0) while keeping nontrivial quantum condensation.
We demonstrate the chaos in the dynamics of quantum gauge theories: The time evolution of homogeneous
quark condensates hq̄qi and hq̄γ5qi in an N ¼ 2 supersymmetric QCD with the SUðNcÞ gauge group at
large Nc and at a large ’t Hooft coupling λ≡ Ncg2YM exhibits a positive Lyapunov exponent. The chaos
dominates the phase space for energy density E ≳ ð6 × 102Þ ×m4

qðNc=λ2Þ, wheremq is the quark mass. We
evaluate the largest Lyapunov exponent as a function of ðNc; λ; EÞ and find that theN ¼ 2 supersymmetric
QCD is more chaotic for smaller Nc.
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Revealing a hidden relation between generic quantum
field theories and chaos is a long-standing problem. The
solution can ignite novel quantitative study of the complexity
of particle physics. The problem is how one can define
a quantity like a Lyapunov exponent, which measures chaos,
in generic quantum dynamics of field theories. The
Lyapunov exponent can be defined only in classical
systems—once the systems are quantized, because the strong
dependence on initial values is lost due to the quantum
effect. Then how can one measure the chaos of purely
quantum phenomena, such as the chiral condensate of QCD?
In the history concerned with this issue, the chaos of the

classical limit of the Yang-Mills theory was first found
[1–6] and was applied to an entropy production process of
heavy ion collisions [7–12] together with a color glass
condensate [13–15]. However, the produced quark gluon
plasma is strongly coupled, and a transition from the classical
Yang-Mills to quantum states is yet an open question. On
the other hand, the recent study [16] of out-of-time-ordered
correlators of quantum fields [17] defined a quantumanalog of
the Lyapunov exponent and opened a new direction about the
problem [18–27]. The problemof chaos in quantumdynamics
could be addressed along the line of this development.
We here provide a solution of the problem. A key

observation is that there exist several ways to relate quantum
field theories to classical ones, although the standard method
is the semiclassical limit ℏ → 0. In fact, a large N limit of
strongly coupled gauge theories is another classical limit. We
use the AdS=CFT correspondence [28] as a tool to resolve
the problem and to map the strongly coupled theories to a
classical gravity, which enables us to calculate the Lyapunov
exponents of expectation values of operators directly probing
the quantum dynamics. The idea is supported by recent

analyses of chaotic motion of classical strings in AdS-like
spacetimes [29–37] (see also [38–43]).
In this Letter, we first show that the linear σ model of low-

energy QCD exhibits chaos of the chiral condensate, which
serves as a toy model of chaos of a quantum phenomenon.
Then we concretely study an N ¼ 2 supersymmetric QCD
with the SUðNcÞ N ¼ 2 gauge group at large Nc and at
strong coupling [44]. By using the AdS=CFT, we calculate
Lyapunov exponents of the time evolution of a homo-
geneous quark condensate. The analysis shows how the
complexity of the quantum dynamics depends on Nc and λ:
The theory is more chaotic for a larger λ or a smaller Nc.
The discovered chaos is a quantum analog of the butterfly
effect. We discuss that our Lyapunov exponent is also
described by a generalized out-of-time-ordered correlator.
Chaos in a linear σ model.—The most popular effective

action for the chiral condensate of QCD is the linear σ
model. It describes a universal class of theories governed
by a chiral symmetry via a spontaneous and an explicit
breaking. The former comes from the QCD strong coupling
dynamics, while the latter comes from a quark mass term.
We find below that the model exhibits chaos.
The simplest linear σ model is with a chiral Uð1Þ

symmetry with an explicit breaking (quark mass) term:

S ¼
Z

d4x

�
−
1

2
½ð∂μσÞ2 þ ð∂μπÞ2� − V

�
; ð1Þ

V ≡ μ2

2
ðσ2 þ π2Þ þ g4

4
ðσ2 þ π2Þ2 þ aσ þ V0: ð2Þ

Here for simplicity we consider only a single flavor
and ignore the axial anomaly. σðxμÞ and πðxμÞ are fields
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whose fluctuation provides a sigma meson field with the
mass mσ and a neutral pion field with the mass mπ ,
respectively. The vacuum expectation value of σ minimiz-
ing the potential V defines the chiral condensate: hσi ¼ fπ .
A constant V0 is introduced just for shifting the vacuum
energy to zero. Relations to observable parameters are
found as 2μ2 ¼ −m2

σ þ 3m2
π , g4 ¼ ðm2

σ −m2
πÞ=ð2f2πÞ, and

a ¼ −m2
πfπ [45].

Let us consider a homogeneous motion [46] of the σ
model fields σðtÞ and πðtÞ, which is a time evolution of the
chiral condensate. In a Hamiltonian language, there are four
dynamical variables ðσ; π; _σ; _πÞ while the conserved quan-
tity is only the total energy, so there may exist chaos. We
search the chaos by varying the total energy density E and
find a chaotic behavior of the chiral condensate. At an
intermediate scale of the energy density, the Poincaré
section (a cross section of orbits in the phase space with
sampled initial conditions sharing a chosen conserved
energy) exhibits a scattered plot, which is chaos; see
Fig. 1. For the numerical simulations, we have chosen
mπ ¼ 135 ½MeV�, mσ ¼ 500 ½MeV�, and fπ ¼ 93 ½MeV�.
In this model, the chaos emerges consequently due to the

existence of a saddle point in the potential V as shown in
Fig. 2. In general, separatrices (boundaries between phase
space domains with distinct dynamical behavior) are
associated with saddle points. They are broken under weak
perturbations and become a seed of chaos. The separatrix
in the potential V is generated by the combination of the

explicit and the spontaneous symmetry breaking terms.
For example, a potential with no aσ term makes the system
integrable due to the Poincaré-Bendixon theorem.
It is interesting that the chaotic phase (at which the

Poincaré section is covered mostly by an ergodic chaos
pattern) appears only at an intermediate scale of the energy
density: 1.3 × 102 ½MeV�< E1=4 < 1.7 × 102 ½MeV�. It is
roughly equal to the height of the separatrix ∼m2

πf2π . The
measure of the chaos is provided by the Lyapunov exponent

LðEÞ≡ lim
t→∞

lim
dð0Þ→0

1

t
log

dhq̄qiðtÞ
dhq̄qið0Þ

; ð3Þ

where dhq̄qiðtÞ is the distance between the two time
evolution orbits of the quark condensate σðtÞ and
dhq̄qið0Þ is taken to be infinitesimally small. The energy
dependence of the calculated Lyapunov exponent of the
linear σ model is given in Fig. 3. We observe that chaos
appears only at the intermediate energy scale. It suggests
that the thermal entropy of QCD might be related to the
Lyapunov exponent and to an entropy production of the
thermal history of the Universe in some manner.
Chaotic chiral condensate.—Our analysis suggests that

generically chaos appears in the time evolution of chiral
condensates, because the linear σ model is just based on a
symmetry and its breaking. Although there are various σ
models of QCD, they contain the simplest linear σ model
(1) as a subsector. Generic σ models concern non-Abelian
chiral symmetries UðNfÞ with Nf quark flavors, and the
hidden local symmetry [47,48] can be used to formulate
vector meson actions. Generically, non-Abelianization
accompanies a specific nonlinearity due to the hidden
symmetry, which is another possible nest of chaos.
Unfortunately, linear or nonlinear σ models are toy

models in which a classical treatment is not simply
justified, and, furthermore, they describe only a universality
class, so a precise relation to QCD is lost. Only with the
large Nc limit is classicalization certified and an explicit

FIG. 1. The Poincaré sections for the linear sigma model.
The horizontal axis is σðtÞ, while the vertical axis is _σðtÞ. The
section is chosen by πðtÞ ¼ 0. The energy density is chosen as
E1=4 ¼ 100, 130, 140, 150, 160, and 200 [MeV] in the top-left,
top-right, middle-left, middle-right, lower-left, and lower-right
figures, respectively.

FIG. 2. The potential V of the linear σ model. The horizontal
axes are for σ and π. The potential bottom is at ðhσi; hπiÞ ¼
ðfπ; 0Þ. Because of the quark mass term, there appears a
separatrix on the negative axis of σ.

PRL 117, 231602 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

2 DECEMBER 2016

231602-2



connection found. In the following, we resort to the
AdS=CFT correspondence with which the large Nc and
the large λ limits lead to an exact classical theory of mesons
and chiral condensates. Using the AdS=CFT correspon-
dence, a chaotic index such as the Lyapunov exponent can
be calculated as a function of theories.
Action for the quark condensates from AdS=CFT.—In

AdS=CFT correspondence [28], chiral condensates at large λ
and large Nc can be seen at the asymptotic behavior of bulk
fields corresponding to the gauge-invariant operators such as
hq̄qi and hq̄γ5qi. In this Letter, as a first step, we analyze
the most popular holographic model, the N ¼ 2 super-
symmetric QCD. In the theory with Nf hypermultiplets of
fundamental quarks coupled to the N ¼ 4 supersymmetric
Yang-Mills theory, the quark sector is introduced asNf probe
D7-branes [44] in the geometry of AdS5 × S5 (see [49] for a
review). The static quark condensates vanish due to the
supersymmetries. We are interested in the time-dependent
dynamics of the condensates, which is directly encoded in the
D7-brane action we calculate in the following.
Any chaos needs nonlinear terms, and the D7-brane

action suffices the need. For multiflavor case Nf ≥ 2, the
action possesses a non-Abelian symmetry UðNfÞ and is
effectively described by a massive SUðNfÞ Yang-Mills
theory. There are two adjoint scalar fields which measure
the fluctuation of the Nf D7-brane world volume in the
transverse directions, and those vacuum expectation values
are the condensates hq̄qi and hq̄γ5qi. Let us evaluate the
non-Abelian D-brane action proposed in Ref. [50]:

SD7 ¼ −TD7

Z
d8ξSTr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ~Grs

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
detQa

b

p
; ð4Þ

where ~Grs ≡Grs þGraðQ−1 − δÞabGsbðr; s ¼ 0;…; 7Þ
and Qa

b ≡ δab þ i½Xa; Xc�Gcb=2πα0ða; b ¼ 8; 9Þ. We took a
static gauge and have ignored gauge fields on theD7-branes,

and Grs ≡ grsðXÞ þ ∂rXa∂sXbgabðXÞ is the induced metric
on the D7-branes. The AdS5 × S5 metric gðXÞ is

ds2 ¼ r2

R2
ðdxμÞ2 þ R2

r2
½dρ2 þ ρ2dΩ2

3 þ ðdX8Þ2 þ ðdX9Þ2�;

where X8 and X9 are directions transverse to the D7-brane
and r2 ≡ ρ2 þ ðX8Þ2 þ ðX9Þ2. Here R≡ ð2λÞ1=4ðα0Þ1=2 is
theAdS radius, and TD7 ≡ ð2πÞ−6ðα0Þ−4g−2YM is theD7-brane
tension. “STr” means a symmetrized trace in the UðNfÞ
adjoint indices.
A static classical solution of the D7-brane action was

found in Ref. [44] as ðX8; X9Þ ¼ ðc; 0Þ in which c is
related to the quark mass as c ¼ 2πα0mq. The D7-brane
solution independent of ρ means vanishing condensates
hq̄qi ¼ hq̄γ5qi ¼ 0, since these expectation values are
coefficients of 1=ρ2 appearing in X8ðρÞ and X9ðρÞ at
ρ ∼∞. Fluctuations ðw8; w9Þ≡ ðX8 − c; X9Þ correspond
to towers of scalar or pseudoscalar mesons of the theory,
and the action quadratic in the fluctuations provides the
spectra of the mesons [51]. A linear analysis of the action
(4) concerning a part of the commutator term was found in
Ref. [52]. We need the full structure of the commutator
term. Expanding the action (4) around the classical solution
up to a quadratic order in ∂X and also up to a single
commutator term ½X;X�2, we obtain

S ¼ −TD7

Z
ρ3d4xdρdΩ3STr

�
1þ R4ð∂μwaÞ2

2ðρ2 þ c2Þ2

þ ð∂ρwaÞ2
2

−
R4½w8; w9�2

2ð2πα0Þ2ðρ2 þ c2Þ2
�
: ð5Þ

The expansion is valid for wa ≪ c and j∂μwaj ≪ c2=R2.
We assumed that wa is independent of Ω3 for simplicity.
We are interested in low-energy region, so we excite only

the lowest meson eigenstate wa ¼ ½N =ðρ2 þ c2Þ�ϕaðtÞ and
substitute it to (5). The normalization N is fixed to have a
canonical kinetic term for the lightest scalar or pseudoscalar
mesons ϕa. The resultant action for spatially homogeneous
meson fields is

S ¼
Z

d4xTr

�
1

2
_ϕ2
a −

8π2m2
q

λ
ϕ2
a þ

36π2

5Nc
ðϕ8;ϕ9Þ2

�
: ð6Þ

The matrix elements of the expectation value of the mesons
are the condensates of the flavor i; jð¼ 1;…; NfÞ:

(ϕij
8 ðtÞ;ϕij

9 ðtÞ) ∝ (hq̄iqjðtÞi; hq̄iγ5qjðtÞi): ð7Þ

At the static vacuum, the condensates vanish in thisN ¼ 2
supersymmetric QCD.
Chaotic behavior.—To extract the simplest nonlinearity,

we consider Nf ¼ 2 and a subsector ϕ8 ¼ xðtÞσ1=
ffiffiffi
2

p

FIG. 3. The Lyapunov exponent L [MeV] of the linear σ model
as a function of the energy density E1=4 ½MeV�. The initial
condition is chosen as σ ¼ fπ and _σ ¼ _π ¼ 0.
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and ϕ9 ¼ yðtÞσ2=
ffiffiffi
2

p
. This respects the equations of motion

of (6). Then the system reduces to a classical mechanics of
a quartic oscillator with the action

S0 ¼
Z

dt

�
1

2
ð_x2 þ _y2Þ −m2

2
ðx2 þ y2Þ − gx2y2

�
: ð8Þ

Here m≡ 4πmq=
ffiffiffi
λ

p
is the meson mass, and the quartic

coupling is g≡ 72π2=ð5NcÞ. This is a well-known model
of chaos [2,3] (see [4] for a review). In Fig. 4, we show six
numerical plots of Poincaré sections of the system as an
example to visualize the chaos [53]. As the energy density
increases, the system clearly shows an order-chaos phase
transition. Indeed, it is known that, in this system (8), above
a certain energy chaos dominates the phase space [2,3,54].
On the other hand, for a lower energy, the system is in an
ordered phase and the motion is regular. So, we conclude
that the time evolution of the homogeneous quark con-
densate of the N ¼ 2 supersymmetric QCD at strong
coupling and at large Nc has a chaotic phase.
Let us study the strength of the chaos as a function of the

theory, λ, Nc, and mq. The system is invariant [2,3] under
the following scaling symmetry: x → αx, y → αy, t → βt,
and λ → β2λ, Nc → α2β2Nc, mq → mq, E → ðα2=β2ÞE.
So, a scale-invariant combination Eλ2=Nc governs the
dynamical phase of the system. The chaos-order phase
transition occurs at a critical energy scale Echaos above
which the Poincaré section is covered mostly by the

ergodic chaos pattern. Our numerical calculation shows
Echaos ∼ 0.6m4

q for λ ¼ 100 and Nc ¼ 10, so together with
the scaling argument we obtain

Echaos ∼ ð6 × 102Þ ×m4
q
Nc

λ2
: ð9Þ

Therefore, the energy region for chaos increases for smaller
Nc or larger λ. We conclude that our N ¼ 2 supersym-
metric QCD is more chaotic for smaller Nc or larger λ.
By the scaling transformation described above, the

Lyapunov exponent, which has the dimension of inverse
time, is scaled as L → β−1L. In Fig. 5, our numerical
evaluation of theLyapunovexponent is shown. InFig. 5 (left),
ðNc=EÞ1=4L is plotted as a function of ðE=NcÞ1=2λ, where the
horizontal and vertical axes are taken as scaling-invariant
combinations. This figure is convenient to see the λ depend-
ence of the Lyapunov exponent for fixed Nc and E. For
ðE=NcÞ1=2λ≲ 10, one can see that there is no chaos, i.e.,
L ¼ 0. For 10≲ ðE=NcÞ1=2λ≲ 200, the Lyapunov exponent
increases linearly as a function of log λ. Fitting the plots in
this region, the following formula is obtained:

L≃
�
E
Nc

�
1=4

�
0.90 log

��
E
Nc

�
1=2

λ

�
− 2.03

�
: ð10Þ

Slightly above the critical energy scale Echaos, the
Lyapunov exponent can be approximated by this
simple expression. For large λ, it deviates from (10) and
has a maximum value L≃ 1.6 × ðE=NcÞ1=4 at λ≃ 200×
ðNc=EÞ1=2. For ðE=NcÞ1=2λ≳ 200, the Lyapunov exponent
decreases, because the mass term disappears and chaos
is expected to be saturated by that of the pure massless
Yang-Mills.
In Fig. 5 (right), the same result is shown in a different

normalization,Nc=ðEλ2Þ vs λ1=2L. This is convenient to see
Nc dependence for fixed λ and E. From the figure, we can
find that Lyapunov exponent is a decreasing function of Nc
for fixed E and λ. Therefore, we conclude that the strongly
coupled large Nc N ¼ 2 supersymmetric QCD is more
chaotic for a smaller Nc.
Outlook.—We have explicitly showed that Lyapunov

exponents can be calculated for chiral condensates by

FIG. 4. The Poincaré sections for λ ¼ 100 and Nc ¼ 10. The
horizontal axis is yðtÞ, while the vertical axis is _yðtÞ. The
section is chosen by xðtÞ ¼ 0. The energy is chosen as
E ¼ 0.05, 0.1, 0.3, 0.6, 0.8, 1 in the top-left, top-right,
middle-left, middle-right, lower-left, and lower-right figures,
respectively, in the unit mq ¼ 1.

FIG. 5. The Lyapunov exponent L as functions of λ (left) and
Nc (right) in the unit of mq ¼ 1.
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using the large Nc limit, which amounts to solving the
problem of assigning a chaos index to quantum dynamics.
Let us note that our Lyapunov exponent L can be written

as an out-of-time-ordered correlator

e2Lt ∼ hE;Mj½QðtÞ; Pð0Þ�2jE;MiN≫1;λ≫1; ð11Þ

where QðtÞ≡ ψ̄ψðtÞ is the chiral condensate operator
inserted at time t and P is for its shift, ½QðxÞ; Pðx0Þ� ¼
iδðx − x0Þ. The state jE;Mi is an energy eigenstate of
the supersymmetric QCD Hamiltonian, with a degeneracy
index M [55]. The original out-of-time-ordered correlator
uses a thermal partition [16,17], while ours is an energy
eigenstate, so the temperature scale of the former roughly
corresponds to our energy E.
Our method can assign a Lyapunov exponent to quantum

dynamics of gauge theories and opens broad applications
of chaos to particle physics. Possible arenas may include
entropy production (see [57]), anarchy neutrino masses
[58], and Higgs criticality [59] and related inflations
[60–62]. It would be interesting to find some relations
between fundamental physics and chaos.
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