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Collective motion of large human crowds often depends on their density. In extreme cases like heavy
metal concerts and black Friday sales events, motion is dominated by physical interactions instead of
conventional social norms. Here, we study an active matter model inspired by situations when large groups
of people gather at a point of common interest. Our analysis takes an approach developed for jammed
granular media and identifies Goldstone modes, soft spots, and stochastic resonance as structurally driven
mechanisms for potentially dangerous emergent collective motion.
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Studies of collective motion cover a broad range of
systems including humans, fish, birds, locusts, cells,
vibrated rice, colloids, actin-myosin networks, and even
robots [1-3]. Often, theoretical models of these active
matter systems take a Newtonian approach by calculating
individual trajectories generated in silico from the sum of
forces acting on each of N particles [3]. Of the work
focusing on humans, social interactions such as collision
avoidance, tendencies to stay near social in-group mem-
bers, directional alignment, and preference for personal
space have been examined to understand their role in
emergent behavior [4-7]. Generally, these studies show
order-disorder transitions are driven by the competition
between social interactions and randomizing forces [8,9].
Models based on these findings have been incorporated
into predictive tools used to enhance crowd management
strategies at major organized gatherings; however, the
validity of this approach is diminished in extreme social
situations such as riots, protests, and escape panic [10-12].
In these situations, conventional social interactions no
longer apply [13], and the actual collective behavior can
be quite different from model predictions [14,15].

Situations involving large groups of people packed at
high densities provide a unique view of emergent collective
behavior in extreme conditions [8,10]. For example, attend-
ees at heavy metal concerts often try to get as close as
possible to the stage but are unable to do so due to the sheer
number of people trying to attain the same goal [Fig. 1(a)].
Consequently, the audience in this region of the concert
venue becomes a densely packed shoulder-to-shoulder
group with little room for individuals to freely move.
Often, the stresses involved become dangerously high and
security professionals standing behind physical barriers are
required to pull audience members from the crowd for
medical attention [16]. At black Friday sales events, we
find similar situations when individuals seeking low-cost
consumer goods congregate at the entrance of a store before
it opens [Fig. 1(b)]. As documented in many reports and
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online videos, these events can have tragic outcomes in the
critical moments after the doors open and the crowd surges
forward resulting in stampedes and trampling.

In extreme situations involving large high-density
crowds, physical interactions between contacting bodies
and the simultaneous collective desire of each individual to
get to a stage, through a door, or to a particular location
become the dominant considerations [5,12,17]. To generi-
cally capture these scenarios, we use a conventional force-
based active matter model for human collective motion, but
remove terms that account for social interaction. With this
simplification, we have an asocial model for human collec-
tive behavior describing people aggregating around a
common point of interest P. Here, we place P at the side
of a2D L x L simulation box [Fig. 1(c)]. In this framework,
each person i is modeled as a disk with radius ry < L
positioned at a point 7;(¢) and subject to pairwise collision
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. Z-propulsion
forces , a self-propulsion force FY"" , random

. . . . 7-noise
force fluctuations from environmental stimuli F;

rigid-wall collision force F}™".

For each of the N self-propelled particles (SPPs) in our

repulsion N 3/2A
F; =¢€ Aj;r’:i(l_rij/er)/ Tijs

,and a

model we have

which takes nonzero values only when the distance
between two particles |7; — 7| = |r;;7;;| = ri; < 2ry [8]:

> ropulsi . )
FYOPON — vy — v;) P, where vy is a constant preferred

speed, v; is the current speed of the ith SPP, and p; is a
unit vector pointing from each particle’s center to the
common point of interest P; F'°* = 7, is a random force
vector whose components 7; ; are drawn from a Gaussian
distribution with zero mean and standard deviation o
defined by the correlation function (i;,(f)n; (7)) =
2u'6%5,58(t — '), which ensures noise is spatially and
temporally decorrelated. Collisions between the simulation
box’s boundaries and SPPs give rise to a force similar to the
repulsion force, FI'™" = (1 = ry,/ro)>/*#4,, which is non-
zero when the distance of the particle from the wall
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FIG. 1.

Large dense groups of people give rise to emergent collective motion. (a) Attendees gather near the stage at a heavy metal

concert. Credit: Ulrike Biets. (b) Customers gather for black Friday sale to purchase low-cost consumer goods. Credit: Jerry Bailey.
(c) Simulated trajectories of SPPs aggregating near a point of interest P located at the right-most edge of a simulation box. (d) Closeup of
trajectories show SPPs self-organize into a densely packed disordered aggregate.

Tie < Tg, and is directed along the wall’s outward normal

direction. The functional form of F/™">*" and F™" comes
from treating SPP collisions as a Hertzian contact problem
(see the Supplemental Material [18]). In terms of the
simulation unit length # and unit time 7, we set the particle
radius ry = £/2, the simulation box size L = 507, the
preferred speed v, = ¢/t [12], the random force standard
deviation ¢ =#/7> and the force scale coefficients
€ =25¢/7>, u=1"" [8]. Results presented here are for
N =200 SPPs, though varying population size has little
effect on our analysis (see the Supplemental Material [18]).

Simulations were initialized with random initial positions
for each particle. Trajectories were evolved with Newton-

Stomer-Verlet integration according to 7; = F ;epmsm +

rropuision y pnoise  Ewall for a total of 30007 units of time
[Fig. 1(c)], where each 7 consists of 10 integration time steps.
While data for the initial ~507 were dominated by transient
motion, we discarded the first 300z from our analysis to avoid
this far-from-equilibrium effect [Fig. 1(c), linear path seg-
ments]. By 300z the SPPs aggregated near P and settled
into a steady-state configuration with each particle making
small random motions about their average position
[Fig. 1(d)]. For the model parameters studied here, collisions
and random force fluctuations contribute roughly equally
to these motions, as shown by comparing the relevant time
scales (see the Supplemental Material [18]). At average
crowd density n, the collision time scale is
Teol = 1/(2rgvon) =~ (x/4)r and the noise time scale is
Tnoise = V3/210% = 7/2, 80 that 7.q; ~ Ty at steady state.
Thus, F"""" acts as an external field confining the SPPs
into a disordered aggregate, while collision and noise forces
drive position fluctuations within the structure [Fig. 1(d)].
Generally, we find a striking resemblance between these
simulations of high-density crowds and previous studies of
disordered packings [10,19-21] (see the Supplemental
Material [18]). In the context of jammed granular materials,
a significant amount of effort has helped develop theoreti-
cal tools that connect local structure to dynamical response
[22-28]. A key analysis method involves the displacement
correlation matrix whose components are defined by C;; =
([ri(t) = (r)] - [7;(1) = (7;)]). Here, 7;(1) is the instanta-
neous position at time #, (7;) is the mean position of the ith

SPP, and all averages (-) are calculated by sampling
position data every 10z for a total of 270 measurements.
This sampling was chosen to reduce effects of autocorre-
lated motion while still accumulating sufficient statistically
independent measurements in a finite time [22]. In this
computation, we exclude underconstrained SPPs that do
not contribute to the overall collective motion. In the
jamming literature these particles are called ‘rattlers,”
and they are distinguished by abnormally large position
fluctuations [22]. In our analysis, we used a position
fluctuation threshold of 4 standard deviations to identify
rattlers. However, our results were self-consistent for values
ranging from 2 to 5 indicating the methodology is robust
(see the Supplemental Material [18]).

To extract quantitative information from the SPP configu-
ration, we computed eigenmodes ¢,, and eigenvalues /,, of
the displacement correlation matrix. In the harmonic theory
of crystals, these normal modes fully characterize the linear
response of the system to perturbations [29]. For disordered
materials, these modes convey information about structural
stability as well as coherent and localized motion [23-25]. In
nonequilibrium systems, only modes with eigenvalues that
are sufficiently large play a role in determining the response
to perturbations [22]. These modes must be carefully
identified and interpreted due to differences between equi-
librium and nonequilibrium dynamics (see the Supplemental
Material [18]). Plotting the eigenvalue spectrum 4,, as a
function of mode number m averaged over 10 runs with
random initial conditions revealed an approximate power-
law decay [Fig. 2(a), blue and orange data]. While the Debye
model for 2D crystals obeys A,, ~m~!' [Fig. 2(a), upper
dashed line] [29], the simulation data has an exponent
between —1 and —2. Using a random matrix model of
uncorrelated Gaussian variables as a control for relevant
modes [Fig. 2(a), black dotted line] (see the Supplemental
Material [18]) [22], we see the lowest six eigenmodes contain
information about correlated motion [Fig. 2(a), vertical black
dashed line]. Plotting displacement vector fields for a few
eigenmodes, we indeed find a higher degree of spatial
correlation for lower m that rapidly diminishes with increas-
ing mode number [Fig. 2(b)]. To quantify this observation,
we measured the polarization of each mode’s vector field
and calculated the fluctuation correlation function for this
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FIG. 2. Eigenmode analysis of asocial model for high-density
human crowds. (a) Eigenvalue spectrum 4,, of the displacement
correlation matrix exhibits scaling properties between A, ~ m™!
and ~m~2 (black dashed lines). Low m eigenmodes in both x
(blue) and y (orange) directions are larger than a random matrix
model (RM,), and thus describe correlated motion. (b) Snapshot
of instantaneous displacements d7 and example vector fields for
various eigenmodes. Lower m eigenmodes are more spatially
correlated than higher m. (c) A heatmap of the polarization
correlation function for the first 10 eigenmodes as a function of
distance d between SPPs. Black line is where the correlation
function decays to 0 demonstrating a long-range highly correlated
mode for m = 1.

order parameter (see the Supplemental Material [18]) [30].
Remarkably, we find the first eigenmode carries a system-
spanning displacement modulation [Fig. 2(c), m = 1],
whereas the correlation for higher modes rapidly decays
over a few particle diameters [Fig. 2(c), m > 1].

To understand the origins of this long wavelength mode,
we note self-propulsion toward P breaks XY translational
symmetry, and therefore the Goldstone theorem implies the
existence of low-frequency long-wavelength deformations
[31-33]. This Goldstone mode is expected to arise at low m
since eigenvalues are related to vibrational frequencies by
A, = ®,7, and the largest eigenvalue in the spectrum
occurs at the lowest mode number [Fig. 2(a)]. Thus, the
system-spanning m = 1 eigenmode is the system’s
Goldstone boson. In the context of active matter, this is
known as the “Goldstone mode of the flock,” and when
excited, it drives the SPPs to move collectively as one
[34-37]. We hypothesize a real-world example of this type
of coherent long-range motion is ‘“crowd crush” [13].
In these situations, a large number of people are suddenly
displaced toward a wall, fence, or other architectural
element resulting in dangerously high pressures and occa-
sionally death [10,38]. Empirically determining if
Goldstone modes are responsible for crowd crush would
require careful image analysis of crowd structure and
motion in the moments before such an event. Never-
theless, we expect any large dense gatherings to exhibit
this type of long-range collective behavior since it origi-
nates from the general principle of symmetry breaking.

Another type of disaster found at high-density gatherings
is when sudden unexpected movements of the crowd cause
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FIG. 3. Soft spots within the crowd undergo large displace-
ments. (a) SPPs are shown as disks. Soft spots near the core of the
aggregate colocalize with SPPs that displace the most in real
dynamics. This region is subject to large structural rearrange-
ments when the system is perturbed, and is likely a region where
injury can occur. Apparent soft spots along the periphery are
artifacts due to underconstrained edge effects. (b) Averaging over
all simulation runs show soft spots generally occur near the core
of the aggregate at radial distance p ~ (2 4+ 1) away from P.
(¢) Structure factor g(#) measures the pair-wise SPP distribution
of distances between particles and reveals structural features
distinguishing SPPs in soft spots that suggest why they are
subject to large displacements.

individuals to trip and fall. Because the majority of people
are unaware this accident has happened, the rest of the
crowd moves largely uninterrupted, resulting in injury or
death due to trampling [10,13,39]. This is more general
than the excitation of a pure Goldstone mode, and is better
characterized by a superposition of modes. Thus, we focus
on the particles that displace significantly more than
average in a given mode m [Fig. 3(a), displacement
threshold is 2.5 standard deviations more than average]
(see the Supplemental Material [18]). Studies of jammed
granular media show these particles, which tend to cluster
in regions called “soft spots,” correlate with structural
rearrangements when the system is perturbed [25].
Superimposing data from the first 10 modes of a single
simulation run reveals a soft spot near the core of the
aggregate [Fig. 3(a)]. Regions along the perimeter also
exhibit large displacements, but they are essentially under-
constrained edge effects and therefore not relevant for our
analysis [28]. Identifying SPPs undergoing the largest
displacements in each mode up to m = 10 in all simulation
runs show the region near the core of the crowd is the most
likely area to find soft spots [Fig. 3(b), peak centered on
p = 2]. Cross-correlating soft spot SPPs with their real-
space dynamics confirmed these particles typically displace
the greatest amount despite being confined within a
disordered aggregate [Fig. 3(a)].

We further studied the relation between structural dis-
order and large displacements in soft spots by measuring
the structure factor g(#), which quantifies the distribution
of distance » between the center of adjacent particles
(Supplemental Material [18]), and found that soft spot SPPs
have an intrinsically different structure compared to the
average population [Fig. 3(c)]. The secondary peak in g(#)
around 0.5 < #» < 0.8 [Fig. 3(c) solid line] indicates soft
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spot SPPs are more highly squeezed by some of their
neighbors, while the shifted peak centered on 7~ 0.9
indicates they are also further away than average from
other neighbors [Fig. 3(c), dashed line peak at »~ 0.8].
These data suggest soft spot SPPs are being compressed
tightly in one direction, and as a consequence displace
greater amounts in the orthogonal direction. As such,
self-organized structural disorder is fundamental for large
displacements and rearrangements [Fig. 3(a)] [25]. Because
these large random rearrangements would likely be expe-
rienced as unexpected lurching movement for the average
member of a human crowd, we hypothesize soft spots pose
the greatest risk for tripping and subsequent trampling. If
found true, real-time image analysis identifying soft spots
in densely packed human crowds may provide useful
predictive power for preventing injuries.

Our results thus far have focused on structural origins of
collective motion with all model parameters kept constant.
In real life situations, not all people behave the same: some
agitate more easily, others less so [9,15]. Accordingly, we
modify the asocial model to study how mechanisms for
coherent collective motion are affected by active perturba-
tions. Specifically, we introduce a second population of SPPs
so that a fraction f exhibits a more agitated behavior, while
the remaining fraction 1 — f of the population is the same as
before [8,9]. We model these agitated SPPs with a larger

distribution of force fluctuations in F1°™° by increasing their

standard deviation to 6, > o, and analyze the two parameter
phase space of f and o,,. We first consider the case 6, = 30
and vary f from 0 to 1. Calculating the spectrum of
eigenvalues 4,, shows the qualitative trends are independent
of f, though numerical values of 4,, tend to increase with
more agitators (see the Supplemental Material [18]). To
understand how long-range collective motion is affected by
agitated SPPs, we measured the polarization fluctuation
correlation function for the first 10 modes while varying
o, and f [Fig. 4]. Surprisingly, the correlation functions for
6, = 30 show a qualitative transition with varying f unan-
ticipated from the eigenvalue spectrum: the eigenvalues
smoothly vary with mode number while the correlation
functions exhibit new behaviors. For f = 0.1, a long-range
correlated Goldstone mode is observed as before. However,
multiple long-range correlated modes are observed for
f = 0.2, and no long-range correlated modes are observed
for f > 0.3. Examining other values of ¢, shows a similar
transition with increasing f from a single well-defined long-
range mode, to multiple long-range modes, to no long-range
modes whatsoever [Fig. 4, along rows, read left-to-right].
The low-agitation and high-agitation limits are intuitive.
For low agitation [Fig. 4, white region], additional force
fluctuations through increasing o, with low f or increasing
f with low ¢, induce small perturbations to the overall
structure. As such, the existence of a Goldstone mode at
low m is anticipated based on the homogeneous population
results [Fig. 2(c)]. For high agitation where the combined
effect of o, and f is large [Fig. 4, dark gray shaded region],
we expect local structure to break down and correlated
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FIG. 4.

o, in F probes structural origins of collective motion. Each
heat map is the polarization fluctuation correlation function for
the first 10 eigenmodes as a function of distance d [same as
Fig. 2(c)]. Low fluctuations (white background) preserve the
long-range highly correlated Goldstone mode near m = 1. High
fluctuations (dark gray background) destroy long-range corre-
lated modes. Intermediate fluctuations (light gray background)
add new modes with long-range correlations, indicating stochas-
tic resonance.

Introducing a fraction f of agitated SPPs with variance
noise

motion to be marginalized. Consistent with this reasoning,
we find no long-range modes in the high-agitation limit.

Between the high and low agitation limit, we find a
boundary in the (f,o,) phase diagram characterized by
multiple long-range modes [Fig. 4, light gray shaded region].
This result is striking because it shows moderate levels of
noise produce new coherent motion. Noting that correlated
motion allows mechanical information to be transferred
across the aggregate, an appearance of multiple long-range
modes implies greater information bandwidth. In certain
settings, signal enhancement mediated by noise is called
stochastic resonance [40,41]. Generally, stochastic reso-
nance is found in systems where nonlinear effects dampening
signal propagation are suppressed by random noise. In our
case, nonlinear effects suppressing conventional phonon
modes come from structural packing disorder. Random noise
from agitators increases the internal pressure within the
aggregate, breaking up the disordered configuration of
particle-particle contacts. Consequently, phonon modes
otherwise suppressed by packing disorder [Fig. 2(c), modes
m > 1] reassert their presence [Fig. 4, additional long-range
modes in light-gray region] (see the Supplemental Material
[18]). In the context of our model, this indicates that modest
random fluctuations can enhance overall collective motion,
increasing the potential for injurious outcomes in high-
density crowds.

Our analysis of collective motion in dense crowd simu-
lations relies on trajectory data in order to identify and
understand the emergence of Goldstone modes, soft spots,
and stochastic resonance. With an eye to crowd safety, the
dependence on measurable quantities combined with com-
puter vision techniques [42,43] provides significant potential
for applications in real-time crowd management, which may
help protect attendees at large gatherings by reducing
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emergent risks [10,15,39]. More theoretically, the observa-
tion of Goldstone modes hints at a collective motion
analogous to the Higgs boson that may be found in collective
speed modulations. To elaborate, active matter systems
breaking continuous rotational symmetry can be represented
by an orientation field quantifying the SPP vector headings.
Long-range fluctuations in orientation correspond to the
zero-energy Goldstone mode. Associated with this velocity
vector orientation field is the velocity vector speed field. This
speed field is subject to fluctuations with an energetic cost
that does not go to zero at infinite wavelength, indicating the
presence of a massive boson otherwise known as the Higgs
boson. Developing an effective field theory around these
ideas and incorporating quasiparticlelike excitations would
likely present new opportunities for understanding emergent
collective motions, their interactions, and potential hazards in
large social gatherings.
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