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The lack of detailed balance in active colloidal suspensions allows dissipation to determine stationary
states. Here we show that slow viscous flow produced by polar or apolar active colloids near plane walls
mediates attractive hydrodynamic forces that drive crystallization. Hydrodynamically mediated torques
tend to destabilize the crystal but stability can be regained through critical amounts of bottom heaviness or
chiral activity. Numerical simulations show that crystallization is not nucleational, as in equilibrium, but is
preceded by a spinodal-like instability. Harmonic excitations of the active crystal relax diffusively but the
normal modes are distinct from an equilibrium colloidal crystal. The hydrodynamic mechanisms presented
here are universal and rationalize recent experiments on the crystallization of active colloids.
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In active colloidal suspensions [1,2] energy is continu-
ously dissipated into the ambient viscous fluid. The balance
between dissipation and fluctuation that prevails in equi-
librium colloidal suspensions [3,4] is, therefore, absent.
Nonequilibrium stationary states in active suspensions,
then, are determined by both dissipative and conservative
forces, quite unlike passive suspensions where detailed
balance prevents dissipative forces from determining
phases of thermodynamic equilibrium. In this context, it
is of great interest to enquire how thermodynamic phase
transitions driven by changes in free energy are modified in
the presence of sustained dissipation.
In two recent experiments, disordered suspensions of

active colloids have been observed to spontaneously order
into two-dimensional hexagonal crystals when confined at a
plane wall. Bottom-heavy synthetic active colloids which
catalyze hydrogen peroxide when optically illuminated are
used in the first experiment [1], while chiral fast-swimming
bacteria of the species Thiovulum majus are used in the
second experiment [2]. Given this remarkably similar crys-
tallization in two disparate active suspensions, it is natural to
ask if the phenomenon is universal and to search for
mechanisms, necessarily involving dissipation, that drive it.
Our current understanding of phase separation in par-

ticulate active systems is derived from the coarse-grained
theory of motility-induced phase separation (MIPS), where
active particles are advected by a density-dependent veloc-
ity [5]. Microscopic models with kinematics consistent
with MIPS also show phase separation and crystallization
of hard active disks have been reported in two dimensions
[6]. However, these models ignore exchange of the locally
conserved momentum of the ambient fluid with that of the
active particles and are, thus, best applied to systems where
such exchanges can be ignored. Fluid flow is an integral
part of the physics in Refs. [1,2] and a momentum-
conserving theory, currently lacking, is essential to identify
the dissipative forces and torques that drive crystallization.

In this Letter, we present a microscopic theory of active
crystallization that connects directly to the experiments
described above. Specifically, we account for the three-
dimensional active flow in the fluid and the effect of a
plane wall on this flow. Representing activity by slip in a
thin boundary layer at the colloid surface [7] we rigorously
compute the long-ranged many-body hydrodynamic forces
and torques on the colloids. Thus, we estimate Brownian
forces and torques to be smaller than their active counter-
parts by factors of order 102 (for synthetic colloids in
Ref. [1]) to 104 (for bacteria in Ref. [2]) making them
largely irrelevant for active crystallization. We integrate the
resulting deterministic balance equations numerically to
obtain dynamical trajectories.
Our main numerical results are summarized in Fig. (1).

Panels (a)–(c) show the spontaneous destabilization of the
uniform state by attractive active hydrodynamic forces, the
formation of multiple crystallites, and their coalescence
into a single hexagonal crystal at late times. Panels (d)–(f)
show the structure factor at corresponding times. The route
to crystallization is not through activated processes that
produce critical nuclei, but through a spinodal-like insta-
bility produced by the unbalanced long-ranged active
attraction. The uniform state is, therefore, always unstable
and crystallization occurs for all values of density, in
contrast to the finite density necessary for crystallization
in MIPS models [5]. Active hydrodynamic torques tend to
destabilize the ordered state but stability is regained when
these are balanced by external torques (from bottom-
heaviness in Ref. [1]) or by chiral activity (from bacterial
spin in Ref. [2]). Crystallites of chiral colloids rotate at an
angular velocity that is inversely proportional to the number
of colloids contained in them, as shown in panel (g). This is
in excellent agreement with the experiment of Ref. [2]. The
critical values of bottom heaviness and chirality above
which orientational stability, and, hence, positional order, is
ensured is shown in panel (h). We now present our model
and detail the derivation of our results.
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Model.—We consider N spherical active colloids of
radius b near a plane wall with center-of-mass coordinates
Ri, orientation pi, linear velocity Vi, and angular velocity
Ωi, where i ¼ 1…N. Activity is imposed through a slip
velocity vAi , which is a general vector field on the surface Si
of the ith colloid satisfying

R
ρ̂i · v

A
i dSi ¼ 0 [8], where ρi is

the vector from center of the colloid to a point on its
surface. The fluid velocity v is subject to slip boundary
conditions

vðRi þ ρiÞ ¼ Vi þΩi × ρi þ vAi ðρiÞ ð1Þ
on the colloid surfaces, to a no-slip boundary condition
v ¼ 0 at the plane wall located at z ¼ 0, and to a quiescent
boundary condition at large distances from the wall.
The slip is conveniently parametrized by an expansion

vAðRi þ ρiÞ ¼
P∞

l¼1½1=ðl − 1Þ!ð2l − 3Þ!!�VðlÞ
i · Yðl−1Þðρ̂iÞ

in irreducible tensorial spherical harmonics YðlÞðρ̂Þ ¼
ð−1Þlρlþ1∇ðlÞρ−1, where ∇ðlÞ ¼ ∇α1…∇αl . The expansion

coefficients VðlÞ
i are lth rank reducible Cartesian tensors

with three irreducible parts of ranks l, l − 1, and l − 2,
corresponding to symmetric traceless, antisymmetric, and
pure trace combinations of the reducible indices. We denote

these by VðlsÞ
i , VðlaÞ

i , and VðltÞ
i , respectively. The leading

contributions from the slip,

vAi ðρiÞ ¼ −VA
i þ 1

15
Vð3tÞ

i · Yð2Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

achiral;polar

−
1

9
ε · Vð3aÞ

i · Yð2Þ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

chiral;apolar

þ Vð2sÞ
i · Yð1Þ

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
achiral;apolar

−ΩA
i × ρi −

1

60
ε · Vð4aÞ

i · Yð3Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

chiral;polar

;

ð2Þ

have coefficients of polar, apolar, and chiral symmetry. Here
ε is the Levi-Civita tensor. The retained modes have physical
interpretations: for a single colloid in an unbounded fluid,VA

(lσ ¼ 1sÞ and ΩA ðlσ ¼ 2aÞ are the linear and angular
velocities in the absence of external forces and torques,Vð2sÞ

is the active contribution to the stresslet, while Vð3aÞ, Vð3tÞ,
and Vð4aÞ are strengths of the chiral torque dipole, polar
vector quadrupole, and chiral octupole, respectively. The
tensors are parametrized uniaxially,VA

i ¼ vspi,ΩA
i ¼ ωspi,

Vð2sÞ
i ¼ Vð2sÞ

0 ½pipi − ðI=3Þ� and so on, where vs and ωs are

speeds of active translation and rotation and Vð2sÞ
0 positive

(negative) corresponds to a pusher (puller). The relation of
these modes to exterior fluid flow and Stokes multipoles is
explained in Ref. [9].
The synthetic active colloids in Ref. [1] are polar and

achiral (they self-propel but do not spin), while the bacteria
in Ref. [2] are polar and chiral (they self-propel and spin).
Both these cases are included in the leading contributions.
In Ref. [7] a procedure is outlined for estimating the leading
coefficients from experimentally measured flows and it is
shown that the active flow produced by flagellates and
green algae can be modeled by slip. Our model is of
sufficient generality, then, to include both synthetic and
biological active colloids, and situations where swirling
and time-dependent slip may be necessary [16].
Active forces and torques.—Newton’s equations of

motion for the colloids reduce, when inertia is negligible,
to instantaneous balance of forces and torques

FH
i þ FP

i þ ξTi ¼ 0; TH
i þ TP

i þ ξRi ¼ 0: ð3Þ

Here, FH
i ¼ R

fdSi, FP and ξT are, respectively, the
hydrodynamic, body and Brownian forces, while,
TH
i ¼ R

ρi×fdSi, TP
i and ξRi are corresponding torques,

σ is the Cauchy stress in the fluid, and f ¼ ρ̂i · σ is the
traction. The linearity of the Stokes equation implies that
these must be of the form

FIG. 1. Panels (a)–(c) are instantaneous configurations during
the crystallization of 1024 active colloids of radius b at a plane
wall. The colloids are colored by their initial positions. Panels
(d)–(f) show the structure factor SðkÞ at corresponding instants.
Wave numbers are scaled by the modulus of the reciprocal lattice
vector k0 and the contribution from k ¼ 0 is discarded. Panel
(g) shows the variation of the angular velocity Ωc of a crystallite
with the number N of colloids in it. A typical configuration is
shown in the inset. Panel (h) is the state diagram for orientational

stability in terms of the measure of chirality Vð3aÞ
0 and bottom

heaviness T0 (see text). Each dot represents one simulation. Here,
vs is the self-propulsion speed of an isolated colloid, τ ¼ b=vs,
and ϵ is the scale of the repulsive steric potential.
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FH
i ¼ −γTTij ·Vj − γTRij ·Ωj −

X∞

lσ¼1s

γðT;lσÞij · VðlσÞ
j ; ð4aÞ

TH
i ¼ −γRTij ·Vj − γRRij ·Ωj −

X∞

lσ¼1s

γðR;lσÞij · VðlσÞ
j ; ð4bÞ

where repeated particle indices are summed over. The γαβij ,
with α, β ¼ T, R, are the usual friction matrices associated

with rigid body motion and γðα;lσÞij are friction tensors
associated with the irreducible modes of the active slip.
They are of rank lþ 1, l, and l − 1, respectively, for σ ¼ s,
a, t. The forces and torques depend on relative position

(through the γðα;lσÞij ) and on relative orientation (through the

VðlσÞ
j ). Their signature under time reversal shows that the

active contributions are dissipative.
We calculate the friction tensors using a Galerkin

discretization of the boundary integral equation [7] with
the Lorentz-Blake Green’s function [17] which, by con-
struction, vanishes at the plane wall. The γðT;lσÞij decay as

r−ðlþ1Þ
ij and r−ðlþ2Þ

ij in directions parallel and perpendicular

to the wall. The γðR;lσÞij decay one power of rij more rapidly.
While the force and torque so obtained are sufficient to
study colloidal motion, additional insight is obtained from
studying the flow, which we compute from its boundary
integral representation. Further details are given in Ref. [9].
The modes lσ ¼ 1s and lσ ¼ 2a contribute most domi-

nantly to forces and torques and they attain their lower
bounds far away from the wall, where their magnitudes are
F ¼ 6πηbvs and T ¼ 8πηb3ωs. The bacteria in Ref. [2]

have radius b ∼ 4 μm, swimming speed vs ∼ 500 μm=s,
and angular speed ωs ∼ 50 s−1 in a fluid of viscosity
η ¼ 10−3 kg=ms. This gives an estimate of F ∼ 40 ×
10−12 N and T ∼ 10−16 Nm. For the synthetic colloids in
Ref. [1], b ∼ 2 μm, vs ∼ 10 μm=s, which corresponds to
F ∼ 10−13 N. Typical Brownian forces and torques are of
order OðkBT=bÞ ∼ 10−15 N, and OðkBTÞ ∼ 10−21 Nm,
respectively. Thus, active forces and torques overwhelm
Brownian contributions by factors of 100 or more in these
experiments and, henceforth, we neglect their effects.
Trajectories are obtained by integrating the kinematic equa-
tions _Ri ¼ Vi and _pi ¼ Ωi × pi, where Vi and Ωi satisfy
Eq. (3) with Brownian contributions removed. Integration
methods and parameter choices are detailed in Ref. [9].
Crystallization kinetics.—The kinetics of crystallization

obtained from numerical solutions is shown inmovie 1 of the
SupplementalMaterial [9], together with the evolution of the
structure factor SðkÞ. The uniform state is destabilized, most
notably for any initial density, by attractive active hydro-
dynamic forces. Steric repulsion between particles balances
these to produce crystallites with hexagonal positional order.
Rings in the structure factor first appear at wave numbers
that correspond to Bragg vectors of the lattice, reminiscent of
a spinodal instability, representing the averaged scattering
from randomly oriented crystallites. These sharpen into
Bragg peaks as crystallites coalesce and orientational order
grows. Finally, particles assemble into a single crystallite
which continues to rotate, while the structure factor shows a
clear sixfold symmetry. In the SupplementalMaterial, movie
2 [9] we show the formation of a hexagonal unit cell from

FIG. 2. Distortion of the flow produced by leading polar ðlσ ¼ 1sÞ and apolar ðlσ ¼ 2sÞ slip terms in Eq. (2) as an active colloid of
radius b, shown in green, approaches a plane wall. Tracer colloids are show in white. The streamlines of fluid flow have been overlaid on
a pseudocolor plot of logarithm of the magnitude of the local flow normalized by its maximum. The flow in (c) results when the colloid
is brought to rest near the wall. Hydrodynamic forces attract nearby colloids, as shown by thick white arrows, leading to crystallization.
Hydrodynamic torques tend to reorient the colloids as shown by curved red arrows. The remaining graphs show quantitative variation of
active forces and torques from modes in Eq. (2) scaled by FA ¼ 6πηbvs and TA ¼ 8πηb2vs respectively as a function of height h of the
colloid from the wall and distance, rij ¼ Ri −Rj, from other colloids. Solid and dotted lines represent analytical and numerical results,
respectively (see text). Here, ∥ and ⊥ indicate directions parallel and perpendicular to the wall at z ¼ 0.
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the simulation of seven polar and chiral active colloids.
The crystallite rotates with an angular velocity parallel to the
chiral axis of the colloids.
Universal mechanisms.—To better understand the mech-

anisms behind active crystallization we show, in Fig. (2),
the active flow near a wall and the dominant contributions
to the flow-mediated forces and torques. The top three
panels show the increasing distortion of the flow produced
by the leading polar ðlσ ¼ 1sÞ and apolar ðlσ ¼ 2sÞ modes

of the slip for pi normal to the wall and Vð2sÞ
0 < 0. The flow

develops a monopolar character as the colloid is brought to
rest at a height h by the balance of hydrodynamic attraction,
Fig. 2(d), and steric repulsion from the wall. The induced
monopole on the colloids leads to attractive forces between
them below a critical height h from the wall as shown in
Fig. 2(f). Nearby colloids entrained in this flow are
attracted towards the central colloid as shown in the
rightmost panel and in the Supplemental Material, movie
3 [9]. The balance of the hydrodynamic attraction and steric
repulsion determines the lattice spacing d. We note that
even an apolar colloid is attracted to the wall, Fig. 2(d),
and induces hydrodynamic attractive forces. Thus, unlike
MIPS [5], polarity is not necessary for crystallization.
The induced monopole also tends to reorient the colloids,
by generating a torque in the plane of the wall, as shown by
curved red arrows in Fig. 2(c) and quantified in Fig. 2(g).
Their destabilizing effect can be nullified by external torques
TP ¼ T0ðẑ × piÞ in the plane of the wall due to bottom
heaviness. The orientation can also be stabilized by the chiral
terms in Eq. (2), which produce torques ⊥ to the wall, as
shown in Fig. 2(e). This chiral torque acting ⊥ to the wall,
when combined with destabilizing torque ∥ to the wall,
induces active precession of the orientation about the
wall normal, thereby stabilizing the orientations. The role
of each of the six terms in Eq. (2) in generating positional
order, orientational order, and crystal rotation is tabulated in
Ref. [9]. Activity and body forces pointing away from the
wall are necessary for positional order while bottom heavi-
ness or chirality is necessary for orientational stability.
Harmonic excitations.—We now study harmonic

excitations ui of a perfect hexagonal crystal by expanding
the positions as Ri ¼ R0

i þ ui around the stationary state
R0

i ¼ ðX0
i ; Y

0
i ; hÞ and ignoring orientational fluctuations.

Force balance to leading order gives

−γTTij · _uj þ ð∇jγTTij · VA −DijÞ · uj ¼ 0; ð5Þ

where Dij ¼ −∇j∇iUj0 and U is the sum of all steric
potentials. This shows that relaxation is determined by both
activity and elasticity, unlike in an equilibrium colloidal
crystal where elasticity alone relaxes strains. The normal
modes of relaxation can be obtained by Fourier trans-
forming in the plane and in time. The dispersion is found
from solutions of

det j − iωγTTk þ ikγTTk · VA − Dkj ¼ 0: ð6Þ
Here, k ¼ ðk1; k2Þ is the wave vector restricted to the first
Brillouin zone [9], ω is the frequency, and Dk is the
dynamical matrix. The pair of dispersion relations for
motion parallel to the wall are shown in Fig. (3). The
dispersion for k ≪ k0 is quadratic in wave number

ω� ¼ −i
γT⊥hvs
2γT∥

f�ðθÞk2; ð7Þ

where f�ðθÞ are angular factors, γT∥ and γT⊥ are one-body
frictions parallel and perpendicular to the wall, and
tan θ ¼ ðk2=k1Þ. The small-k approximation is compared
with the numerical solution in Fig. (3) and it is found to
hold for k≲ 0.1k0. These can be interpreted as overdamped
phonon modes of the active crystal [18]. The presence of
the active term ikγTTk · VA in Eq. (6) makes them differ
from phonon modes of a colloidal crystal.
Discussion.—In this work, we have considered only

hydrodynamic forces and torques, unlike the case of
MIPS [5], where Brownian torques drives reorientations
[6]. We have shown that the latter are at least 2 orders of
magnitude weaker than the former for experiments in the
class of Refs. [1,2]. However, it is conceivable that thermal
fluctuations will play a more significant role when the
activity is comparatively weak, modifying both the nature
of crystallization transition and the stability of the crystalline
phase. The spinodal-like instability appears due to the
uncompensated long-ranged attractive active forces. These
can be compensated by entropic forces to stabilize the
disordered phase at finite temperatures. A nucleational route
to crystallization, with activity-enhanced rates, is then

FIG. 3. Branches of the dispersion relation for the two planar
normal modes of relaxation of a hexagonal active crystal. The
curves in the upper panel show the dispersion along high
symmetry directions of the Brillouin zone (first inset). The
surfaces in the second and third insets show the dispersion over
the entire Brillouin zone. Polar plots in the lower panel have
comparisons of the full numerical solution of Eq. (6) with the
approximate solution at small k of Eq. (7) for k ¼ 0.01k0 (left
panel) and k ¼ 0.3k0 (right panel).
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possible in the regime where the active forces reduce the
nucleation barrier without driving it to zero. In the crystalline
phase, thermal fluctuations will excite both phonon and
topological modes. Phonon fluctuations will destroy
long-range translational order [20], but due to the activity-
enhanced stiffness of these modes, large system sizes
(compared to equilibrium) will be needed to observe the
power-law decay of correlations. Topological defects will be
excited at higher temperatures and a defect unbinding
transition [21–25], modified by activity, may destroy trans-
lational order entirely, producing instead an “active” hexatic
phase. These present exciting avenues for future research.
We remark that wall-bounded clustering phenomena in algae
[26] and charged colloids [27] aremediated by specific forms
of the universal hydrodynamic mechanisms presented here.
Finally, we suggest that the flow-induced phase separa-

tion found here may provide a paradigm, complementary to
MIPS, in which theoretical and experimental studies
of momentum-conserving driven [28] and active matter
[29–34] may be situated.
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