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In magnonics, spin waves are conceived of as electron-charge-free information carriers. Their wave
behavior has established them as the key elements to achieve low power consumption, fast operative rates,
and good packaging in magnon-based computational technologies. Hence, knowing alternative ways that
reveal certain properties of their undulatory motion is an important task. Here, we show using
micromagnetic simulations and analytical calculations that spin-wave propagation in ferromagnetic
nanotubes is fundamentally different than in thin films. The dispersion relation is asymmetric regarding
the sign of the wave vector. It is a purely curvature-induced effect and its fundamental origin is identified to
be the classical dipole-dipole interaction. The analytical expression of the dispersion relation has the same
mathematical form as in thin films with the Dzyalonshiinsky-Moriya interaction. Therefore, this curvature-
induced effect can be seen as a “dipole-induced Dzyalonshiinsky-Moriya-like” effect.
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Using the electron’s spin degree of freedom for data
processing instead of its charge is one great challenge. The
first success story can nowadays be seen in spintronic
devices employing various magnetoresistance effects in
magnetic sensors and storage applications. About ten years
ago a new research field called magnonics emerged driven
by the idea to use magnons as carrier of spin information
[1–8]. Magnons, also called spin waves (SWs), are the
dynamic eigenoscillations of the spin system in ferromag-
nets with frequencies in the gigahertz to terahertz range and
with nanometer wavelengths. Novel materials allow for the
coherent propagation of SWs over mesoscopic distances
without any charge transport involved, paving the way for
green data processing. Many concepts have been proposed
theoretically and experimentally, leading to prototype
building blocks of spin-wave-based logic [8–13]. The
experimental discovery of novel phenomena such as the
spin Hall effect, the Dzyaloshinski-Moria interaction
[14,15] (DMI), the spin Seebeck effect, and others proved
powerful mechanisms to excite, manipulate, and detect

SWs in thin magnetic films on the nanometer scale via
coupling of the magnons to charge and heat transport. One
particular feature of SWs in thin films is intriguing: A
certain set of SWs known as Damon-Eshbach (DE) [16]
modes show a nonreciprocity regarding the inversion of the
wave vector caused by dipolar interaction. When the
propagation direction is reversed, these magnons switch
from the top to the bottom surface of the thin film. Recently
it was discovered that an asymmetric exchange interaction
(DMI) in ultrathin ferromagnetic films can also cause an
asymmetric SW dispersion [17], i.e., one can switch from
positive to negative dispersion upon reversal of the wave
vector. In this Letter we show that one can obtain a similar
asymmetric SW dispersion that is purely caused by dipolar
interaction when going from thin films to three-
dimensional structures with curved surfaces, in particular
magnetic nanotubes (MNTs). Such novel structures can
nowadays be very well produced [18,19], motivated by the
broad range of applications for magnetoresistive devices,
optical metamaterials, cell-DNA separators, and drug
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delivery vectors [20,21]. The high stability of their equi-
librium state [22,23] against external perturbations and
their robust domain walls propagating with velocities faster
than the SW phase velocity [24] promote MNTs as
appealing candidates for racetrack memory devices
[25,26] and information processing [24,27].
In this Letter, we report the numerical simulation and full

analytical description of curvature-induced asymmetric SW
dispersion in nanotubes, which has the same mathematical
form [28–31] as the DMI but identifies the dipole-dipole
interaction as the origin of the asymmetry. We demonstrate
that the degree of asymmetry can be tuned with the tube
geometry but also with small electric currents flowing
through the nanotube. Besides the tunability, contrary to
thin films with the DMI, the asymmetry is present and is
significant even in the absence of external magnetic fields.
Finite element micromagnetic simulations [32,33] were

performed to study the propagation of SWs in MNTs. The
numerical research is focused on a tube defined by an outer
radius R ¼ 30 nm, a wall thickness d ¼ 10 nm, and a
length L ¼ 4 μm. The MNT is assumed to be made of
permalloy and the following material parameters are used:
saturation magnetization μ0Ms ¼ 1 T, exchange stiffness
constant A ¼ 1.3 × 10−11 J=m, negligible magnetocrystal-
line anisotropy (Ku ¼ 0), and low Gilbert damping
αG ¼ 0.01. Details of the simulations are presented in
the Sec. S1 of the Supplemental Material [34].
The propagation and dispersion of SWs in MNTs are

simulated for an equilibrium state in which the magneti-
zation rotates around the circumference of the tube, thus
forming a perfect flux closure configuration [35,36]. This
state in the following is referenced as a vortex (V)
configuration. It is not a ground state for the given
geometry and an external field is required to stabilize it.
A circular Oersted field H0 ≥ Hcrit induced by a current
flowing through theMNTor its core can serve this function.
The critical field for the nanotube with the described
geometry is μ0Hcrit ¼ 53 mT [37].
A schematic of the considered system is shown in

Fig. 1(a) with the tube in the V state together with the polar
coordinate system used throughout the Letter, where ρ, φ,
and z are the radial, azimuthal, and long axis coordinates.
The SWs are excited with a homogeneous rf field applied in
the radial direction at themiddle of the tube in a 100 nmwide
region, as indicated with the orange ring in Fig. 1(a). The
SWs propagate from the middle of the nanotube toward its
ends with wave vector kz. The circulation direction of the
magnetization φ̂ together with the propagation direction ẑ
defines a chirality or handedness. The direction of propa-
gation is shown in all figures such that SWs propagating to
the right (left) with kR ≡þjkzj (kL ≡ −jkzj) define the right-
(left-)handed (RH and LH) chirality. Since the propagation
direction is perpendicular to the magnetization, similar to
thin films, this excitation geometry is addressed as the
Damon-Eshbach geometry.

The SW excitation and propagation were simulated for
several values of the circular field. For all field values, the
continuous rf field exciting the SWs is applied until the
steady state is reached. Figure 1(b) shows a snapshot in
time of the SW profiles for the three different excitation
frequencies 8, 10, and 20 GHz for a circular field of 80 mT,
well above the critical field. The color scheme represents
the radial component of the magnetization in an unrolled
view. The rf-field position is illustrated with an orange bar.
λL and λR denote the wavelength of the SWs on the left and
right of the excitation region, respectively. Remarkably, the
wavelength of the SWs propagating to the left differs from
those propagating to the right. This difference in wave-
length decreases with increasing excitation frequencies, but
never vanishes, according to the micromagnetic simula-
tions for the considered range of frequencies.
Figure 2 shows the SW dispersion obtained from the

micromagnetic simulations for two different values of the
circular field, 80 mT and 1 T. The dispersion is asymmetric
regarding the propagation direction and moreover, the
minimum of the dispersion depends on the circular field
as seen by comparing Figs. 2(a) and 2(b). Despite the

FIG. 1. (a) Schematic illustration of a nanotube in a vortex state
and the cylindrical coordinate system. SWs are excited in the
middle with a radial rf field, as illustrated by the orange ring. The
SWs travel toward the ends of the nanotube with a wave vector kz
perpendicular to the magnetization. þkz and −kz indicate the
right and left propagation directions, respectively. (b) A snapshot
in time of the SW profiles (radial component of the magnetization
color coded) for the three different excitation frequencies 8, 10
and 20 GHz for a circular field of 80 mT. The orange bar indicates
the position and width of the rf field. λL(λR) denotes the
wavelength of the waves traveling to the left (right).
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geometrical similarity, our simulations show that the DE
modes in nanotubes behave differently than their thin-film
counterparts. Simulations suggest that for kz ¼ kL there is a
range of wave vectors wherein the group velocity is
negative, specific to the backward volume modes in thin
films. A similar effect has been recently reported for
thin films with the Dzyalonshinskii-Moriya interaction
[17,28–31].
For a deeper understanding of the origin of the asym-

metry observed in the simulations, an analytical formula for
the SW dispersion of nanotubes is presented. The analytical
description is given under the framework of micromagnetic
continuum theory. The dispersion relation is calculated by
(i) linearizing the Landau-Lifshitz-Gilbert equation, and
(ii) solving the linear equation in terms of individual
magnons with wave vector kz along the nanotube axis ẑ,
with an integer wave number n characteristic of the
azimuthal symmetry along φ̂, and with eigenfrequency
ωnðkzÞ. An extensive analytical derivation presented in
Ref. [38] (guidelines can also be found in the Sec. S2 of the
Supplemental Material [34]) leads to the following
dispersion relation for the coherently distributed SWs
[n ¼ 0; SWs with planar wave mode profiles as shown
in Fig. 1(b)] along the φ̂ axis:

ω0ðkzÞ
γ0μ0Ms

¼ K0ðkzÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0ðkzÞB0ðkzÞ

p
; ð1Þ

where the quantities A0 and B0 are defined as

A0ðkzÞ ¼ l2ex

�
k2z −

1

b2

�
þ h0 þ L0ðkzÞ;

B0ðkzÞ ¼ l2exk2z þ h0 þ J 0ðkzÞ ð2Þ

with the functions J 0, K0, and L0 given by

J 0ðkzÞ ¼
π

S

Z
∞

0

dk
k3

2ðk2 þ k2zÞ
½Γ0ðkÞ�2;

K0ðkzÞ ¼
π

S

Z
∞

0

dk
k2kz

k2 þ k2z
Γ0ðkÞΛ0ðkÞ;

L0ðkzÞ ¼
π

S

Z
∞

0

dk
2kk2z

k2 þ k2z
½Λ0ðkÞ�2 ð3Þ

with Λ0ðkÞ ¼
R
R
r dρρJ0ðkρÞ, Γ0ðkÞ ¼ −2Λ1ðkÞ, J0ðxÞ is

the first kind of Bessel function of zero order,
b−2 ¼ 2π lnðR=rÞ=S, and S ¼ πðR2 − r2Þ the nanotube
cross section, with R and r being the outer and inner
radius, respectively. lex ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
A=Kd

p
is the exchange length,

A is the exchange stiffness constant, Kd ¼ ð1=2Þμ0M2
s is

the shape anisotropy constant, and h0 is the circular field
normalized to the saturation magnetization Ms.
Figures 2(a) and 2(b) show the dispersion calculated with

Eq. (1). The solid line representing the analytical calcu-
lations is in perfect agreement with the results of the
simulations.
Using Eq. (1), the SW dispersion is calculated for tubes

with different diameters and a varying circular field. Two
cases are summarized for tubes with a 10 nm film thickness
and an outer radius of 30 and 150 nm in Figs. 3(a) and 3(b),
respectively. As shown, the minima of the dispersion is
shifted towards larger kz values with increasing circular
field, allowing for the manipulation of the asymmetry and
the wave vector ranges for which the SWs have a negative
group velocity. However, the asymmetry is decreased with
increasing outer diameter since the curvature is reduced and
completely vanishes for infinite diameters at the thin film
limit. It is noteworthy that Eq. (1) allows for a systematic
study of the eigenoscillations and its features ½kz;ω0ðkzÞ� as
a function of nanotube size, material parameters, and
applied circular and/or axial fields without the need for
expensive micromagnetic simulations.

(a) (b)

FIG. 2. SW dispersion relation obtained by micromagnetic
simulations (red and blue dots) and analytical calculations (solid
line) for circular fields of 80 mT (a) and 1 T (b). The blue squares
mark the frequencies for which the SW profile is shown in
Fig. 1(b). A nearly perfect agreement between the results of the
micromagnetic simulations and the analytical calculations is
found.

(a) (b)

FIG. 3. The dispersion of SWs is summarized for several
circular fields as a function of wave number for nanotubes with
(a) 30 nm and (b) 150 nm outer radius and a 10 nm film thickness.
The minima of the dispersion are shifted towards larger kz values
with increasing circular field for both diameters. The open dots
represent the minima for each circular field and the solid line
connecting them is a guide to the eye only.
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The asymmetric SW dispersion reported in this Letter
cannot be explained within the classical frame of the DE
dispersion known for thin films. The DE modes in nano-
tubes with negative kz behave as volume-charge-free
backward volume modes in thin films. Such an effect,
however, is already known for thin films [17] with anti-
symmetric exchange (DMI) due to spin-orbit coupling. In
fact the DMI favors a canting of the spins with a given
chirality and therefore introduces a local symmetry break
that can lead to an asymmetric dispersion relation [28–31].
Nevertheless, for nanotubes the source of the asymmetric
dispersion resides only in the dipole-dipole interaction,
which is discussed in the following.
Note that Eq. (1) has the same mathematical form as in

thin films with an interfacial DMI or in crystals with a
special symmetry (Cnv) and a bulk DMI [see Eqs. (6)–(9) in
Ref. [30] and Table 1 in Ref. [28] ]. K0ðkzÞ plays the same
role in nanotubes as the well-known asymmetrical terms in
thin films (crystals) with an interfacial (bulk) DMI (i.e., the
term ð2γ0=MsÞDk in the dispersion of thin films with an
interfacial DMI [30], where D is the DMI constant) but
with the difference thatK0ðkzÞ originates from the dynamic
volume charges created by the SWs as a result of the tubular
curvature. From Eq. (3) it is easy to see that K0ðkzÞ is an
odd function [i.e., K0ðkzÞ ¼ −K0ð−kzÞ], therefore being
the asymmetrical term in the dispersion relation.
The term K0ðkzÞ, which can only be calculated by

numerical integration of the corresponding Bessel func-
tions, comprises the dynamic dipolar energy arising from
the surface as well as from the volume charges [39]

ρv ≡ −ðMs=4πÞ ~∇ · ~M. The negative dispersion or negative
group velocity, however, should be related to small or close
to zero volume charges. With the magnetization in the
vortex state for a SW with wave vector kz, wave number
n ¼ 0, and eigenfrequency ω, the volume charges averaged
over the nanotube radius are hρVi ¼ hρVi0eiðkzz−ωtþξÞ
with

hρVi0 ¼ −
M2

s

4π

�
1

ρ̄
þ kz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B0ðkzÞ
A0ðkzÞ

s ��
1þ B0ðkzÞ

A0ðkzÞ
�

−1
2

; ð4Þ

where A0ðkzÞ and B0ðkzÞ are defined in Eq. (2); ξ is the
phase constant of the radial and axial SW components. It
can be seen that the amplitude is proportional to two terms.
The first term 1=ρ̄ is the inverse of the nanotube average
radius, which is proportional to the mean nanotube curva-
ture [40]. The second term kz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½B0ðkzÞ=A0ðkzÞ�
p

depends
on the propagation vector kz. Hence, the sum of the two
terms depends on the sign of kz. Therefore, for opposite
propagation directions the dynamic volume charges are
different.
In Fig. 4(a) the volume charge amplitude as a function of

wave vector is shown for nanotubes with three different
radii. As expected from the previous considerations, it has

an asymmetric dependence on kz. Moreover, zero volume
charges are obtained for kz values different from zero.
Around these kz values the reduction in energy from the
surface charges is larger than the energy increase from the
volume charges; thus, the total energy decreases, leading to
a negative dispersion.
In Fig. 4(d) the SW profile as well as the divergence

calculated with our TetraMag [32,33] code is shown for a case
when the SWs propagating towards opposite ends have the
same wavelength. Clearly, the resulting dynamic volume
charges and thus the dipolar energies differ for the two
sides. In experiments (or simulations) the excitation is done
with a well defined frequency; therefore, the SW’s should
possess the same energy for the opposite travel directions.
In nanotubes this can only be reached if the wavelengths
differ such that the dynamic dipolar energy resulting from
the surface and volume charges is the same for the two
propagation directions. As a consequence SWs propagating
in opposite directions have different wavelengths and show
an asymmetric dispersion. It is worth mentioning that the
dipole-dipole interaction was reported to be also respon-
sible for the asymmetric domain wall propagation in
nanotubes [41].
The SW asymmetry defined as the frequency difference

of the SWs traveling in opposite directions but with the
same wave vector is also proportional to the asymmetrical
term and can be calculated analytically using Eq. (1). It
reads

(a)

(c)

(d)

(b)

FIG. 4. (a) The volume charge amplitude as a function of wave
vector. (b) SW asymmetry as a function of wave vector kz for
nanotubes with varying radius. (c) The wavelength λSW of the
excited SWs for which the maximum asymmetry is reached
versus the nanotube radius. (d) SW profile for waves with equal
wavelength but opposite travel direction and the corresponding
volume charges. The color scheme encodes the radial component
of the dynamic magnetization. The dark yellow rectangles mark
the excitation region.
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Δf ¼ γMs

2π
jω0ðkzÞ − ω0ð−kzÞj ¼

γMs

π
jK0ðkzÞj: ð5Þ

The SW asymmetry can be estimated from Eq. (3) by
looking at the dependence of K0ðkzÞ on the value of kz.
Equation (5) as a function of wave vector is plotted for
nanotubes with different radii in Fig. 4(b). It can be seen
that the maximum frequency difference decreases with
increasing tube radius. For tubes with a small diameter this
value is in the range of several gigahertz; however, for tubes
500–600 nm in diameter—which are accessible experi-
mentally due to the recent progress in material science [18]
—the frequency difference is still in the range of several
hundred megahertz. The SW wavelength for which the
maximum asymmetry is reached is shown in Fig. 4(c) as a
function of the nanotube outer radius. It is in perfect
agreement with our simple predictions based on the volume
charges; namely, the asymmetry (smallest contribution of
the volume charges to the total energy) is largest for
wavelengths comparable to the nanotube diameter.
In a final step two limiting cases of the dispersion are

presented: (1) kz ¼ 0, and (2) kz ≫ 1=R. For kz ¼ 0
the dispersion has the following form ωFMR ¼
γ0μ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðH0 −HuÞðH0 þMsÞ
p

, which resembles the Kittel
formula for the ferromagnetic resonance (FMR) of a thin
film with the in-plane magnetization parallel to the applied
field, and both oriented perpendicularly to the in-plane easy
axis of the shape anisotropy field Hu. For a large radius,
Hu ≪ H0; therefore, the well-known FMR formula [42]
ωFMR ≈ γ0μ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H0ðH0 þMsÞ

p
for thin films with a homo-

geneous in-plane magnetization parallel to the applied
magnetic field H0 is obtained.
For a very small wavelength, kz ≫ 1=R, the dispersion

can be written as

ω0ðkzÞ≈ γ0μ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMsl2exk2z−HuþH0þMsÞðMsl2exk2zþH0Þ

q
;

ð6Þ

which is identical to the exchange-dominated dispersion
relation of a planar thin film in the Damon-Esbach
configuration with the in-plane magnetization oriented
perpendicularly to the in-plane easy axis [16,43] (The
derivation of the asymptotic analytical expressions is
summarized in Ref. [38]).
In summary, we have shown using micromagnetic sim-

ulations as well as analytical calculations that SW propa-
gation in nanotubes is fundamentally different than in thin
films. The observed asymmetric dispersion is a purely
curvature-induced effect [44–46] and can be tuned with
small electrical currents. We have shown that the SW
asymmetry is in the megahertz to gigahertz range in
frequency and depends on the nanotube radius. The ana-
lytical expression of the dispersion has the samemathemati-
cal form as in thin films with the Dzyalonshiinsky-Moriya

interaction. The fundamental origin of the asymmetric
dispersion is the classical dipole-dipole interaction;
therefore. it can be seen as a “dipole-induced DMI-like
effect.” We hope that the results presented here will
encourage the experimental verification of this curvature-
induced effect.
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