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We study a spin Hamiltonian for spin-orbit-coupled ferromagnets on the honeycomb lattice.
At sufficiently low temperatures supporting the ordered phase, the effective Hamiltonian for magnons,
the quanta of spin-wave excitations, is shown to be equivalent to the Haldane model for electrons, which
indicates the nontrivial topology of the band and the existence of the associated edge state. At high
temperatures comparable to the ferromagnetic-exchange strength, we take the Schwinger-boson repre-
sentation of spins, in which the mean-field spinon band forms a bosonic counterpart of the Kane-Mele
model. The nontrivial geometry of the spinon band can be inferred by detecting the spin Nernst effect.
A feasible experimental realization of the spin Hamiltonian is proposed.
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Introduction.—Electronic systems with spin-orbit cou-
pling (SOC) can exhibit spin Hall effects, in which a
longitudinal electric field generates a transverse spin current
and vice versa [1]. In particular, Kane and Mele [2] showed
that a single layer of graphene has a topologically nontrivial
band structure with a SOC-induced energy gap, which gives
rise to a quantum spin Hall effect characterized by helical
edge states. This identification of graphene as a quantum
spin Hall insulator has served as a starting point for the
search for other topological insulators [3,4].
SOCmagnets with no charge degrees of freedom can also

exhibit various Hall effects [5–8]. By exploiting the ubiqui-
tous spin-heat interactions [9], the thermal Hall effect, in
which a longitudinal temperature gradient induces a trans-
verse heat current, has been used to probe SOC in such
insulating magnets. For ordered magnets, thermal Hall
effects are often accounted for by geometrically nontrivial
band structures ofmagnons, quanta of spin-wave excitations.
For example, Matsumoto and Murakami [8] showed that
certain engineered thin-film ferromagnets can have chiral
edge states of magnetostatic spin waves (that are associated
with topologically nontrivial bulk band structures) and thus
exhibit a thermal Hall effect. For magnets that are disordered
due to either thermal or quantum fluctuations, thermal Hall
effects have been predicted by using the Schwinger boson or
fermion representation of spins [10] that do not need a
putative symmetry-breaking underlying state [6,7,11].
In this Letter, we propose a simple spin Hamiltonian for

SOC ferromagnets on the honeycomb lattice, in which we
can find the bosonic counterparts of both the Haldane [12]
and the Kane-Mele model [2]. In the ordered phase
supported at sufficiently low temperatures, we show that
the effective Hamiltonian for magnons is equivalent to the
Haldane model [12]. For elevated temperatures, where the
system is disordered, we take an alternative Schwinger-
boson (or bosonic-spinon) representation of spins, in which
the mean-field spinon band is identified as a bosonic

counterpart of the Kane-Mele model [2]. The nontrivial
geometry of the spinon band gives rise to the spin Nernst
effect, in which a longitudinal temperature gradient gen-
erates a transverse spin current [9]. Lastly, we propose a
feasible way to realize the underlying Hamiltonian.
Model.—We consider a ferromagnetic material with

SOC whose localized spins are arranged on a honeycomb
lattice. The corresponding model Hamiltonian reads

H ¼ −J
X
hi;ji

Si · Sj − K
X
hi;ji

Szi S
z
j þD

X
⟪i;j⟫

νijẑ · ðSi × SjÞ;

ð1Þ
where the first and second terms represent the isotropic
Heisenberg interaction (J > 0) and the Ising interaction
between nearest neighbors, respectively [13]. The third
term is the Dzyaloshinskii-Moriya (DM) interaction [14]
between next-nearest neighbors, where the constants νij ¼
−νji ¼ �1 characterize the dependence of the interaction
on the relative position of two next-nearest spins [Fig. 1(a)].
Notice that Eq. (1) represents the minimal Hamiltonian
describing the above interactions that are invariant under
D6h point-group symmetry of the lattice with concurrent
spatial and spin rotations. For the particular experimental
realization that we propose in this Letter (see below), the
Ising contribution ∝ K in Eq. (1) can be safely neglected
compared to the other terms. As we are interested in the
topological properties of the model for both ordered and
disordered phases, we introduce an external magnetic
field applied along the z direction [and therefore a
Zeeman coupling term −B

P
iS

z
i in Eq. (1)] to stabilize

the ferromagnetic ground state. We shall denote by d and
by a ¼ ffiffiffi

3
p

d the distances between nearest neighbors and
next-nearest neighbors, respectively.
Magnon picture.—The uniform state Si ≡ Sẑ represents

the classical ground state of the model Hamiltonian (1) for
B ≥ 0 andD<J=

ffiffiffi
3

p
. Application of theHolstein-Primakoff

transformation Sþi ¼ Sxi þ iSyi ¼ð2S−niÞ1=2di, S−i ¼ ðSþi Þ†,
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and Szi ¼ S − ni with ni ¼ d†i di yields the following effec-
tive magnon Hamiltonian

Hm ¼ ð3JSþ BÞ
X
i

d†i di − JS
X
hi;ji

ðd†i dj þ H:c:Þ

−DS
X
⟪i;j⟫

ðiνijd†i dj þ H:c:Þ; ð2Þ

up to second order in the magnon operators di and d
†
i . In this

approximation, the Hamiltonian reduces to the Haldane
model [12].
The topological features of the magnon bands can be

readily captured in the momentum representation. Let
Ψk ¼ ðak; bkÞ be the spinor operators in the Fourier space,
where a and b represent magnon annihilation operators on
the sublattices A and B, respectively. Fourier transform of
the Hamiltonian (2) then reads

Hm ¼
X

k∈B.Z.
Ψ†

k½ð3JSþ BÞI þ hðkÞ · τ�Ψk; ð3Þ

where τ is a pseudovector of the Pauli matrices and

hðkÞ¼
X
j

0
BB@
−JScos½k ·αj�
JSsin½k ·αj�
2DSsin½k ·βj�

1
CCA¼

�
3

ffiffiffi
3

p
DSẑ k¼K

−3
ffiffiffi
3

p
DSẑ k¼K0 ;

ð4Þ

where αi and βi are defined in Fig. 1(a), K≡ ð4π=3a; 0Þ,
and K0 ≡ ð2π=3a; 2π= ffiffiffi

3
p

aÞ. The dispersions of the upper
and the lower energy band are given by

E�
mðkÞ ¼ 3JSþ B� jhðkÞj: ð5Þ

In the absence of SOC (D ¼ 0), the upper and the lower
band meet at two points, K and K0, forming linearly
dispersed bands [15,16]. SOC opens an energy gap Δso ¼
6

ffiffiffi
3

p
DS at these points, making the band structure topo-

logically nontrivial [2]. Figures 1(b) and 1(c) show the one-
dimensional projection of the magnon bands E�ðkÞ and the
direction of hðkÞ, respectively, for the valuesD ¼ 0.1J and
B ¼ 0 [17].
The Berry curvatures of the upper and the lower

magnon bands can be calculated according to the formula
Ω�

m ¼ ∓ n̂ · ð∂kx n̂ × ∂ky n̂Þ=2, where n̂ is the unit vector
along h [18]. Figure 1(d) plots the Berry curvature of the
upper band. Notice that the Berry curvature is large around
the corners of the Brillouin zone, K and K0, where the
vector n exhibits nontrivial topological textures that wrap a
half of the unit sphere. The Chern numbers [5] of the bands
are evaluated as C� ¼ ð1=2πÞ RBZΩ�

md2k ¼ �1.
Spinon picture.—While the magnon picture is valid at

sufficiently low temperatures where the system is ordered,
it fails when the system is disordered due to thermal
fluctuations. For high temperatures comparable to the
exchange strength J, the Schwinger-boson representation
of spins [10] provides an alternative approach to study
the topological features of the spin system. The corre-
sponding transformation reads Sþi ¼ c†i;↑ci;↓, S

−
i ¼ c†i;↓ci;↑

and Szi ¼ ðc†i;↑ci;↑ − c†i;↓ci;↓Þ=2. Here, ci;s (c†i;s) represents
the annihilation (creation) operator of spin-1=2 up or down
bosons at the site i, which are referred to as Schwinger
bosons or bosonic spinons. The local number constraint,P

sc
†
i;sci;s ¼ 2S, needs to be imposed to fulfill the spin-S

algebra. The Hamiltonian (1) in the spinon picture reads

Hs ¼ −2J
X
hi;ji

χ†ijχij −
B
2

X
i

ðc†i;↑ci;↑ − c†i;↓ci;↓Þ

−
D
2

X
⟪i;j⟫

iνijðχ†ij;↑χij;↓ − χ†ij;↓χij;↑Þ

þ
X
i

λiðc†i;↑ci;↑ þ c†i;↓ci;↓ − 2SÞ; ð6Þ

up to a constant, where χij;s ¼ c†i;scj;s are operators defined
for pairs of sites for each spin s, χij ¼ ðχij;↑ þ χij;↓Þ=2, and
λi is the Lagrange multiplier related to the above holonomic
constraint.
As the first and third terms are quartic in the spinon

operators, we take the mean-field approach [19]. We
choose the Hartree-Fock decoupling [20] that retains the
symmetries of the original Hamiltonian by conserving the

(a)

(c) (d)

(b)

FIG. 1. (a) The honeycomb lattice structure and the relative
sign νij of the DM interaction. (b) One-dimensional projection of
the magnon bands [Eq. (5)], which are calculated with a ribbon
geometry with zigzag terminations and 30 unit cells width.
(c) The direction of the vector field hðkÞ [Eq. (4)]. (d) The
Berry curvature of the upper band, Ωþ. For (b)–(d), the
parameters D ¼ 0.1J and B ¼ 0 are used. The shaded honey-
comb in (c) is the first Brillouin zone. Two Dirac points, K and
K0 are denoted in (b) and (c). See the main text for detailed
discussions.
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total number of spinons and the z component of the total
spin by following Ref. [7]. First, we use the mean field
η ¼ hχiji ¼

P
shc†i;scj;si for nearest neighbors i ∈ A and

j ∈ B. While η is a complex number generally, we can
assume it real by absorbing its factor into the operator cj;s.

We then make the substitution, χ†ijχij↦ηχij þ ηχ†ij − η2 in
the Hamiltonian. Second, for next-nearest neighbors, we
define two mean fields for χij;s: ζs ¼ hχij;s þ χji;si=2 for
the symmetric part (with respect to i ↔ j) and ξs ¼
νijhχij;s − χji;si=2i for the antisymmetric part. The two

mean fields are real owing to χji;s ¼ χ†ij;s. We then perform
the necessary substitution. Third, we replace the local
Lagrange multipliers λi by the global one λ. The resultant
mean-field Hamiltonian is given by

Hs ¼ −ηJ
X
hi;ji;s

ðc†i;scj;s þ H:c:Þ

þD
2

X
hhi;jii;s

ðiνijsζ−sc†i;scj;s þ H:c:Þ

þD
2

X
hhi;jii;s

ðsξ−sc†i;scj;s þ H:c:Þ

þ
X
i;s

�
λ − s

B
2

�
c†i;sci;s: ð7Þ

The mean fields η and ζs represent short-ranged spin
correlations [21]. The first two terms in the above
Hamiltonian then correspond to the Kane-Mele model
[2], from which we can infer the nontrivial topology of
the spinon-band structure and the existence of edge states
for both spin-up and spin-down spinons. As we shall
discuss below, the third term of Eq. (7) does not affect
the topological features of the spinon bands.
The spinon Hamiltonian in the momentum representa-

tion reads

Hs ¼
X

k∈BZ;s
Ψ†

k;s½gsðkÞI þ hsðkÞ · τ�Ψk;s; ð8Þ

where Ψk;s ¼ ðak;s; bk;sÞ is the spinor of annihilation
operators, gsðkÞ ¼ λ − sB=2þ sDξ−s

P
j cosðk · βjÞ, and

hsðkÞ ¼
X
j

0
B@

−Jη cos½k · αj�
Jη sin½k · αj�

−Dsζ−s sin½k · βj�

1
CA: ð9Þ

The corresponding upper and lower energy bands for each
spin s are then given by

E�
s ðkÞ ¼ gsðkÞ � jhsðkÞj: ð10Þ

Notice that the spin-down spinon bands mimic the magnon
bands owing to the similarity between the momentum
dependence of hsðkÞ [Eq. (9)] and hðkÞ [Eq. (4)].

Self-consistency of the mean-field approach is guaran-
teed through the equations in momentum space [22]:

2S ¼ 1

2N

X
k;s

½ρ−s ðkÞ þ ρþs ðkÞ�;

12N ¼ J
X
k;s

ρ−s ðkÞ − ρþs ðkÞ
jhsðkÞj

����
X
i

eik·αi

����
2

;

ζs ¼
1

6N

X
k

½ρ−s ðkÞ þ ρþs ðkÞ�
�X

i

cosðk · αiÞ
�
;

ξs ¼
sDζ−s
6N

X
k

ρ−s ðkÞ − ρþs ðkÞ
jhsðkÞj

����
X
i

sinðk · αiÞ
����
2

; ð11Þ

where ρτsðkÞ ¼ fexp½Eτ
sðkÞ=T� − 1g−1 is the Bose-Einstein

distribution of spin-s spinons in the τ band and N is the
number of unit cells. Note that the total number of spinons is
fixed by the first condition. This enables the Bose condensa-
tion of spinons in the limit of zero temperature, which
corresponds to magnetic ordering [21]. Themean-field spinon
bands are obtained by solving self-consistently Eqs. (10) and
(11), which are shown in Fig. 2(a) at the temperature T ¼
0.6J for the values S ¼ 1=2, D ¼ 0.1J, and B ¼ 0.1J. The
SOC induces an energy gap Δso;s ¼ 3

ffiffiffi
3

p
Djζ−sj between the

spin-s spinon bands, whose Chern numbers read C�
s ¼ ∓ s.

Therefore, the topological nontriviality of the bulk bands for
each spin supports the edge states. The thermal dependence
of the mean fields η, ζ↑ and ζ↓ for the parameters S ¼ 1=2,
D ¼ 0.1J is shown in Figs. 2(b) and 2(c). The vanishing of
the self-consistent fields in Figs. 2(b) and 2(c) would signal a
transition of the liquid-gas type, where local correlations
disappear, while maintaining the same symmetries. The
presence of the disordered high-T phase with no correlation
between spins is expected to be an artifact of mean-field
treatments, as for the case of the pure Heisenberg model
(D ¼ 0) where it has been shown to disappear after account-
ing for fluctuations from the mean fields [23].
A connection of the spinon picture to the magnon picture

can be established by taking the zero-temperature limit
T → 0, where the spin-down spinon bands are equivalent to
the magnon bands and the spin-up spinons form the Bose-
Einstein condensation that is the ordered ground state in the
magnon picture. To see this, let us apply an external mag-
netic field B > 0, the system becomes completely polarized
along the z axis, Si ≡ Sẑ, as T → 0. This polarization
corresponds in the spinon picture to the Bose-Einstein con-
densation of spinons into the lowest-energy mode localized
at the k ¼ 0 state for the spin-up spinon band [21]. The
mean fields associated with this polarized state are η ¼ S,
ζ↑ ¼ 2S, ζ↓ ¼ ξ↑ ¼ ξ↓ ¼ 0 and λ ¼ 3JSþ B=2, for which
the spin-down spinon bands are equivalent to the magnon
bands, E�

mðkÞ≡ E�
↓ ðkÞ [24].

Spin Nernst effect.—Spin-up and spin-down spinons
experience opposite Berry curvatures, Ω�

↑ ðkÞ≡ −Ω�
↓ ðkÞ,
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in the absence of an external magnetic field. This can induce
the spin Nernst effect [9], in which a transverse spin current
is generated by applying a longitudinal temperature gra-
dient, Jsy ¼ −αsyx∂xT. The spinon picture is well suited to
compute the spin Nernst conductivity αsyx due to its
applicability over a broad range of temperatures. We use
the expression for αsyx derived in Ref. [25] for the free
magnon bands, αsyx ¼ −ð2VÞ−1Pk;s;τc1½ρτsðkÞ�Ωτ

sðkÞ,
where V¼3

ffiffiffi
3

p
Nd2=2 is the volume of the system

and c1ðxÞ ¼ ð1þ xÞ lnð1þ xÞ − x ln x.
Figure 3 shows the thermal dependence of the spin Nernst

conductivity αsyx for the physical parameters S ¼ 1=2,
D ¼ 0.1J. At zero temperature αsyx ¼ 0 due to the absence
of thermal excitations.As the temperature increases, spinons
are thermally populated and αsyx becomes finite. As the tem-
perature approaches the ferromagnetic-exchange strength J,
the magnitudes of the mean fields start decreasing. The

bands thereby flatten more and have smaller Berry curva-
tures, which in turn results in the suppression of αsyx.
Application of a finite magnetic field increases the energies
of the spin-down spinons, which in turn decreases the
magnitude of the spin Nernst effect. The magnon picture
should give similar numerical results for the spin Nernst
effect for low temperatures and small magnetic field
T; B ≪ J, owing to the equivalence between the magnon
and the spin-down spinon bands in the limit T → 0 and also
the relation between two spinon bandsΩ�

↑ ðkÞ≡ −Ω�
↓ ðkÞ in

the limit B → 0.
Discussion—Although, to the best of our knowledge, the

proposed Hamiltonian does not correspond to any existing
material, the model may be engineered by depositing
magnetic impurities on metals with strong spin-orbit
coupling. The minimal Hamiltonian consists of two terms,
H¼HitþJ Si · sðRiÞ. The first term describes the dynam-
ics of surface electrons, whereas the second one describes
the coupling between the localized spins Si and the spin
density of the metal evaluated at the position of the impuri-
ties, Ri. Magnetic interactions are mediated by itinerant
electrons through the Ruderman-Kittel-Kasuya-Yosida
[26] interaction. When the system respects both mirror
(z → −z) and C6v point-group symmetries, the effective
Hamiltonian reduces to Eq. (1). We provide two exemplary
realizations of such a system in the Supplemental Material
[27]. It is worth remarking that the Ising-like coupling K
appears as a second order effect in the SOC, which justifies
neglecting it over the other first order terms in the SOC.
Breaking the mirror symmetry, e.g., by an external

electric field ∝ ẑ, can generate a DM interaction between
the nearest neighbors [28],

H0 ¼ D0X
hi;ji

ðẑ × αijÞ · ðSi × SjÞ: ð12Þ

The term translates into a Rashba-like hopping term in the
spinon mean-field Hamiltonian:

H0
s ¼

Dη

4

X
hi;ji

X
s;s0

½iðẑ · αij × τÞs;s0c†i;scj;s0 þ H:c:�: ð13Þ

This term competes with the intrinsic DM interaction in
Eq. (1) and can close the topological gaps at the Dirac points
if sufficiently strong as in the Kane-Mele model [2]. In the
presence of a strong magnetic field B, however, the effect of
the term is of orderD=B2 ≪ D in the perturbative treatment
due to the energy separation between the s ¼ ↑ and↓ bands,
which allows us to neglect its effect on the gaps Δso;s ∝ D.
Another possibility would be using chromium tri-halides

like CrBr3, which consist of weakly coupled ferromagnetic
honeycomb layers [29], with the DM interaction induced
by the proximity effect with strong spin-orbit coupled
materials, e.g., Pt.
In the spinon picture, we have neglected fluctuations of

the Lagrangian multiplier λi and the bond operators χij;s

FIG. 3. The spin Nernst conductivity αsyx as a function of
temperature. The inset schematically shows a setup of an
experiment and motions of spinons therein.

(a)

(b) (c)

FIG. 2. (a) One-dimensional projection of the spinon bands
[Eq. (10)] at the temperature T ¼ 0.6J for the parameters
S ¼ 1=2, D ¼ 0.1J, B ¼ 0.1J. A zoom of the middle sector is
shown in the right. The band structure calculation corresponds to
a ribbon geometry with zigzag terminations and 30 unit cells. (b),
(c) The dependence of the mean fields η; ζ↑, and ζ↓ on the
temperature for the parameters S ¼ 1=2 and D ¼ 0.1J. See the
main text for detailed discussions.
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from their mean-field values, which can be taken into
account by, e.g., performing 1=N corrections (the mean-
field treatment corresponds to generalizing the spin sym-
metry group from SU(2) to SUðNÞ and taking N → ∞
limit) [30]. In particular, the phase fluctuations of the bond
operators couple to the spinons as the U(1) gauge fields,
which has been shown to result in confining the spinons in
the ordered phases of some frustrated magnets, e.g., the
Heisenberg antiferromagnet on the square lattice [31].
Investigating effects of the mean-field fluctuations in our
spinon picture is a topic for future research.
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Note added.—Recently, we became aware of recent related
works [16], in which the author studied the topological
property of the magnon band on the honeycomb lattice and
the associated thermal Hall effects. The spinon bands and
spin Nernst effects, however, are not discussed in the paper.
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