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A persistent spin helix (PSH) is a robust helical spin-density pattern arising in disordered 2D electron
gases with Rashba « and Dresselhaus f spin-orbit (SO) tuned couplings, i.e., @ = £f5. Here, we investigate
the emergence of a persistent Skyrmion lattice (PSL) resulting from the coherent superposition of PSHs
along orthogonal directions—crossed PSHs—in wells with two occupied subbands v = 1, 2. For realistic
GaAs wells, we show that the Rashba a, and Dresselhaus f, couplings can be simultaneously tuned to

equal strengths but opposite signs, e.g., oy

=pf, and ap, =

—f,. In this regime, and away from band

anticrossings, our noninteracting electron gas sustains a topologically nontrivial Skyrmion-lattice spin-
density excitation, which inherits the robustness against spin-independent disorder and interactions from its
underlying crossed PSHs. We find that the spin relaxation rate due to the interband SO coupling is
comparable to that of the cubic Dresselhaus term as a mechanism of the PSL decay. Near anticrossings, the
interband-induced spin mixing leads to unusual spin textures along the energy contours beyond those of the
Rahsba-Dresselhaus bands. Our PSL opens up the unique possibility of observing topological phenomena,
e.g., topological and Skyrmion Hall effects, in ordinary GaAs wells with noninteracting electrons.

DOI: 10.1103/PhysRevLett.117.226401

Topological spin textures in crystals arise in connection
with the electron-electron interaction. Skyrmions in the
fractional quantum Hall regime [1,2], magnetic and multi-
ferroic systems [3] exemplify spin patterns characterized by
topological invariants associated with the nontrivial wind-
ing of the spins. Nontopological helical spin patterns, e.g.,
spin-density waves in metals [4] can also occur. When
coupled to conduction electrons, the emergent electrody-
namics of the nontrivial spin textures gives rise to funda-
mental phenomena, e.g., the topological and Skyrmion Hall
effects in chiral magnets [5].

Here, we show that noninteracting 2D electrons in two-
subband quantum wells [6,7] with matched SO couplings
of opposite signs a; = f; > 0,2, = —f, < 0, can sustain a
persistent Skyrmion lattice (PSL), Fig. 1. This should allow
the observation of fundamental topological phenomena in
ordinary (nonmagnetic) GaAs wells.

The formation of this Skyrmion lattice can be easily
understood for ballistic electrons (later on, we include
disorder). For a single-subband well with a; = f;, the
Rashba-Dresselhaus Hamiltonian is effectively 1D: Hgp; =
2a0,p,/h = gugoyB,/2, ie., an electron-momentum
(py)-dependent Zeeman interaction with a unidirectional
effective magnetic field B, (y||[110], x||[110]). Here, o, is
the Pauli matrix and pp the Bohr magneton. The correspond-
ing quantum evolution operator is Ugpy, (1) = e~ "9#s9:B:1/2h —
e~10vQ1%/2 where x = p.t/m*, Q| = 4m*a,/h?, and m* the
electron mass. Hence a spin-up electron injectedatx =y = 0
precesses around this B, field such that
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FIG. 1. (a) Energy dispersion for a GaAs double well with two
subbands (no disorder) and (b) its potential profile and wave
functions. (c¢) Calculated SO couplings vs V: intraband (inter-
band) Rashba a, () and Dresselhaus g, (I'). The dotted-dashed
vertical line (orange) indicates the crossed PSH symmetry point
a; = By and @, = —f,. (d) Energy contours: the arrows pointing
along the orthogonal axes x (pink) and y (green) define the
subband SO fields within subbands 1 and 2, respectively. (e) PSL
pattern in the 2DEG. The size of the circles and arrows denote
(s.) and (s,), respectively. Blue (dark gray) circles stand for
spins up and red (light gray) for spins down.
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This spinor leads to a spin-density wave in the first subband
s'(r), with s} o sin(Qyx), s} = 0, s} o« cos(Q;x), and pitch
Q;. This helical pattern also arises in the presence of spin-
independent disorder and (time-reversal conserving) inter-
actions, and is known as a persistent spin helix (PSH) [8,9] (see
Ref. [10] for “ballistic PSHs”). Koralek et al. first observed a
PSH via transient spin grating spectroscopy [11]; Walser et al.
imaged PSHs using time-resolved Kerr rotation microscopy
[12]. A single PSH is, however, nontopological.

By considering a second subband with @, = —f, <0
(Fig. 1), we can generalize Eq. (1) so that a spin-up electron
injected into both subbands evolves to

1 cos(Q;x/2)
0 sin(Q;x/2)

Urpi ® Urp2 L cos(0p/2) | (2)
0 isin(Q,y/2)

where Ugp, = €*%2¥/2, Here, the second subband gives
rise to a PSH with pitch Q, = 4m*a,/h? and spin density
53 < 0, 53 o sin(Q,y), and 52 « cos(Q,y), orthogonal to
that of the first subband. These crossed PSHs form the
unconventional pattern o s' (r) + s(r) in Fig. 1(e): a PSL,
that shows regions of zero and maximum or minimum spin
densities characterized by a topological invariant
(Skyrmion number).

The PSL texture inherits the robustness of the crossed
spin helices, which are protected by the underlying SU(2)
symmetry (within each subband) in lowest order of the
cubic and interband SO interactions. More physically, this
|

i <51,k1] + ay(o5k; — o3k5) + p1(05k;

where o5 5 are the spin Pauli matrices, ky ; the wave vector
components along the x||[100] and ¥||[010] directions, and
a,, f,, the Rashba and Dresselhaus intrasubband couplings,
respectively, for subbands v =1, 2. Note that Eq. (3)
accounts for SO-induced intersubband couplings [6,29] via
the parameters # (Rashba) and I" (Dresselhaus) [30]. Note

that H describes two usual Rashba-Dresselhaus systems
[the 2 x 2 upper left (a;, f;) and lower right (a,, f,)
blocks] coupled via the intersubband “off-diagonal blocks”
(n, T'). The energy dispersions of H display anticrossing
near k., e.g., Fig. 2(a) for InSb wells. Similar dispersions
(not shown) hold for a GaAs. As we show in the SM,
[Sec. (II.C)] [20], for typical electron densities the Fermi
wave vectors are such that kp < k. for GaAs and kp ~ k,
for InSb wells. Next, we use Lowdin perturbation theory to
decouple (in orders of k or the subband energy separation
Ag) the two Rashba-Dresselhaus blocks in Eq. (3); this
procedure is valid for k = kr < k. as we discuss in the
SM, [Sec. (D] [20].

— o5ks)

robustness follows from the partial cancellation of the
linear-in-momentum Rashba and Dresselhaus SO terms for
a; =, and a, = —f,, which renders unidirectional SO
fields within each subband [Fig. 1(d)], and underlies the
emergence of spin-conserved quantities in the system [8,9].
As the electrons move, they undergo spin rotations about
orthogonal effective magnetic fields, thus forming the
Skyrmion pattern in Fig. 1(e). Note that our PSL is identical
to the “spin crystal” of Ref. [13].

We have also derived analytical expressions for the PSL
spin density [Fig. 1(e)] in the presence of disorder both
(i) quantum mechanically [8] and (ii) via diffusive equa-
tions [9,14-19]. We show that intersubband-induced spin
relaxation limits the PSL lifetime similarly (in magnitude)
to the cubic Dresselhaus term; PSLs are then feasible. With
no disorder, our energy dispersions feature two Dirac cones
at k =0 Fig. 1(a), an anticrossing with spin mixing
[significant in InSb, Fig. 2(a)], and highly anisotropic
four-branch Fermi contours Fig. 1(d).

Model Hamiltonian.—We consider a quantum well with
two subbands. The two lowest spin-degenerate eigensolu-
tions are (r|k,v,o) = e*Tp,(z)l6,), v=1, 2, and
o. = 1,1, with energies €, = &, + h*k>/2m*, where k
is the in-plane electron wave vector and ¢, is the vth
confined well level. Here, we generalize the usual
single-subband Rashba-Dresselhaus Hamiltonian for
this two-subband case, which reads to linear order in k

[see Supplemental Material (SM), Sec. (I.A,) for
details [20]]
&1 + ay(o5ks — 03ks) + Br(o5ks — 03ks) )

|

For convenience, let us first rotate the axes around z such
that ¥ — x||[110], § — y||[110] (z]|/[001]) and then perform
a spin rotation R = e~:%/2 with 6, = n/4. To lowest
order, we find the uncoupled blocks

M, = el + (=a, + B)ocky + (@, + B 5ok, (4)

in which m* is the effective mass, B = g1 — 3 — pli, with
i=x, y, Bl =ylk?lv) (“bare” linear Dresselhaus),
p3 =ynn,/2, n, the subband areal density, and y =
11.0 eV A® the bulk Dresselhaus constant [31], and B is
a function of Ae = ¢, — ¢, n,, n, and I' [Eqs. (S12)—(S13),
SM [20]]. As we show in the SM [see discussion after
Eq. (S26) [20]], B} < f83; hence in what follows, we take the
couplings A" in Eq. (4) to be 8, = ! — 3. This shows that
the intersubband couplings (7, I') essentially do not alter the
PSH condition within each subband, a, = +4,.

Equation (4) shows that our two-subband well can be
described (to linear order in k) as two uncoupled “copies”
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FIG. 2. (a) Energy dispersions Ey ; ; (scaled by a factor

of 10 for visibility) along k||[100] (or k, = k,) for an
InSb double well. The black solid lines correspond to the
uncoupled (7 =1 = 0) bands E:fk and cross at k.. For 7,
I'#0, these bands anticross (dashed lines). Away
from k., the coupled and uncoupled cases coincide. The
label sets (1, 2, 3, 4) and (5, 6, 7, 8) denote Fermi points
along k; at Ej and Ep, respectively. Panels (b) and (c)
show (o;) and (o), respectively, along k;. The solid

ki
and dashed lines correspond to the respective energy
branches in (a).

of the usual single-subband Rashba-Dresselhaus model H,,
with renormalized parameters. Each copy has SU(2)
symmetry at a, = £f, [9]. Next, we show that the unique
matching a; = #; > 0 and a, = —ff, < 0 occurs in real-
istic GaAs wells [Fig. 1(a) shows the energy dispersions
E%, in this case, see Eq. (S27) in the SM [20]].

SO couplings for GaAs wells.—We self-consistently
solve both Schrodinger’s and Poisson’s equations to obtain
the eigenfunctions ¢,(z) of a GaAs double well (similar
results hold for a single wide well), Fig. 1(b); see SM,
Sec. (I) [20]. From ¢, (z), we calculate the SO couplings,
Fig. 1(c). While a; and @, have opposite signs and are very
sensitive to the gate voltage V, across the well, ; and f,
(B1 = p,) are practically constant [29]. At V, = —10 meV
(dotted-dashed vertical line), we find a; = f; = —a, =
Py =145 meVA (black dots), which enables crossed
PSHs as we discuss below.

Robust eigenspinors even with disorder.—More realis-
tically, we now consider an arbitrary time-reversal sym-
metric potential V(r) (spin independent), e.g., due to
nonmagnetic disorder [8], in Eq. (4): HYy,, = H, + V(r).
Fora; = f; > 0and a, = —f, < 0 [Fig. 1(¢)], HY;, admits

cigenstates of the form y,’(r) = @(r)e”?*/2[1 ) and

Wi’ (r) = p(r)e’2|],) for subband 1, and y}(r)=

p(r)e'@2[1,) and yi(r) = p(r)e €2} for sub-
band 2. Here, Q, =4m*a,/A> (v=1, 2, Q, >0,
0, <0) and [1,), [{.) (1)), [{y)) are the eigenvectors
of 6, (6,). The “envelope function” ¢(r) satisfies
(=r2V?2m* +V(r))p(r) = (e—e,+2a2m* /1) p(r) [32].
Because [H.0,] =0 and [H,.0,] =0, the eigensolu-
tions of HY,, possess (i) robust spin states against non-
magnetic scattering (the spin and orbital variables factorize
in ‘HY;.), and (ii) definite SO-induced spin-rotation phases
dependent only on the distance “traveled” along x and vy,
respectively. From (i) and (ii) we construct next “Skyrmion
states.”

Persistent Skyrmion lattice: Quantum approach.—Let

yi(r) = p(r) (e 211y + @2 ) /v/2 and s (r) =
@ (1) (€921 ) +e7102¥/2| | V) //2,i.e., stationary spin-up
states at r = O for each subband v = 1, 2 at the Fermi energy
Er. The corresponding spin densities s*(r) within each
subband are s' (r):%wf(r)o-yll (r)xsin(Q;x)x+-cos(Q;x)2
ands?(r) = Lyl (r)oy, (r) o« sin(Q,y)9 + cos(Q,)2, with
6 =o,X + 0,9+ 0,2 These are orthogonal PSHs. Now,
considering the stationary superposition y(r) = [y (r) ®
w,(r)]/v/2 at Ep (this is feasible [11,12] as we discuss

later on), we can calculate the spin density s(r) =y (r)(1 ®

16)w(r) (in units of 7) as

S(x.9) = § [p(r)P(sin(Q )5 + sin(Q2)3
+ [cos(Qyx) + cos(Qay)]2}. (5)

Interestingly, s(r) = [s!(r) +s%(r)]/2 forms a persistent
Skyrmion lattice [13], Fig. 1(e), arising from two orthogonal
PSHs, along X (first subband) and y (second subband). We
assume @(r) = e’*T (“weak disorder”), i.e., |p(r)[>* =1 in
Eq. (5), to obtain Fig. 1(e). Our PSL inherits the robustness
from its constituent persistent spin helices. In analogy to
Ref. [13], we can define i = s/|s| and show that the PSL is
characterized by a Skyrmion number over its unit cell area S:
(1/47) [¢h - (0.4 x Oyf)dxdy. Next we corroborate the
quantum results presented here via diffusive equations.

Semiclassical approach.—Following Refs. [18,19], we
solve a set of diffusive transport equations for the coupled
dynamics of charge n*(x,y, ) and spin s} (x,y,t) den-
sities in subbands v = 1, 2, valid in the weak SO interaction
limit (@, )p,krt/h < 1, 7 being the momentum scattering
time [see SM, Sec. (III), for details [20]].

At oy = B and a, = —f, (symmetry point), the Fourier
components of the spin density s%(qy, g,,?) obey

S;(q, l‘) = AIJ{.+(q)em;.+(q)t +A5__(q)€w;»‘(q)t, (6)

where A% (q), j=x, y, z, are amplitudes set by the
initial conditions, !, =w.,=-Dg*-T\+Ciq,=w!,
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2 .2 _ 2_ 72 2. .2
a)z’i—wy’i——Dq —Ty:tquyzwi,

and w}l,’i:a)i_i:
—Dg?, with D = v%z/2 the diffusion constant, vy=
hky/m* the Fermi velocity, ¢ =q2+q2, Ct=4a,k3t/m",
C2=—4mkit/m*, T\ =8atkit/h?, and T2=8adk}t/h>.
Hence given an arbitrary initial spin density s(q,z = 0)
[or, equivalently, s(r, = 0)], we can determine s j(q, 1) =
s;(q. 1) + s7(q, 1) and the spin-density profile s;(r, 1) =
[ s;(q.1)e" """ dq at any time 7. Next, we discuss how PSLs
can be realized.

Exciting a PSL via transient spin grating—The setup in
[11] can be implemented with crossed lasers of wave
vectors q¢ = ¢%% and q° = ¢%9. This creates orthogonal
spin gratings with an initial spin density s,(r,0) o
cos (g4x) + cos (¢%y) and s,(r,0) = s5,(r,0) = 0. In real
space, the resulting z component s! + s? reads

1 a a a
s,(r,1) :Z(e‘”i(q g - (a1 122 (407 cos ()

|
4 (e 0 26 W cos (g)y). (7)

Similarly, we find for x and y, respectively,

1 a a .
sar 1) = 7 (e 00 — e sin (). (8)

,(r.1) = = (20 — @) in (gly).  (9)

The spin grating experiment of [11] uses one laser and finds
two decay constants for s, in a one-subband well [Eq. (6)].
Here, we have two subbands and two lasers; hence we find
four time constants in each subband, two of which are equal
[Eq. (7)]; see, also, SM, Secs. (IIL.B), (IIL.C) [20].
Equations (7)-(9) show that the spin density excitation
decays to zero as t— oo for arbitrary ¢¢ and qﬁ.
However, when the laser wave vectors are tuned to match
the pitches of the crossed PSHs, i.e., q* = O %, (a; = ),
and ¢” = 0,9, (1 =-f), we have ! (0Q;,0)=
@?(0,0Q,) =0, and hence s.(r,t — o) = sin (Q,x)/4,
sy(r,t—=o00)=sin(Q,y)/4, and s,(r,t—00)=[cos(Q;x)+
cos(Q,y)]/4. This is the PSL within the diffusive approach
[cf. the quantum result in Eq. (5)].

Self-forming PSL upon photoexcitation.— A single PSH
evolves from a uniform photoexcited spin-polarized density
[e.g., s.(r,0) = 1] in one-subband wells as demonstrated in
[12]. By the same token, a PSL (crossed PSHs) will also
emerge in this setting, provided that ; = f; and a, = —f,.
Essentially, all Fourier components of s_(r,0) = 1 decay to
zero as t — oo, except those with the two “magic” q’s:
q; = 0% and q, = 0,7, thus leading to crossed helices or
a PSL [see SM, Sec. (III.D) [20]].

Detrimental effects to the PSL.—Our PSL so far has an
infinite lifetime. It is known that, in single-subband wells,
the cubic Dresselhaus (neglected so far) limits the lifetime

of persistent spin helices. In addition, our PSL arises in
two-subband wells and intersubband spin decay may be
an issue. However, we show that the spin relaxation rate
due to the interband SO coupling (Elliott-Yafet type) [33] is
comparable to that of the cubic Dresselhaus (D’yakonov-
Perel type) [9,11,34] in limiting the PSL lifetime [see SM,
Sec. (IV) [20]]. Furthermore, deviations from the PSL
condition a; = f; (and/or a, = —f,) such that a, =
a, + 6, with |6,/a,| < 1 (v = 1, 2), induce spin scattering
with (golden-rule) rates ~52; i.e., spin dephasing vanishes
in linear order in 9, [8,35]. Hence PSLs should be feasible
with the setups in [11,12].

To mitigate the stringency of the “a = #” condition at a
unique value, we note that both ¢ and f can be varied
simultaneously for a single sample—while still keeping
a = p—over a wide range of electron densities in single-
subband GaAs wells as shown in Ref. [31]. This allows
for helices with gate-tunable pitches and, ultimately,
to Skyrmion lattices with controllable lattice constants (pro-
vided the findings in [31] hold for two-subband wells).

Band anticrossing and spin texture in k space.—Now, we
turn to the effects of the interband couplings # and I" on the
energy spectrum of H [Eq. (3), no disorder]. The solid lines
in Fig. 2(a) show the bands Elfk for the uncoupled case
I' =15 =0 [see Eq. (S27) in the SM [8,20]]. Both # and I
couple these bands with distinct “spin” and orbital quantum
numbers. Here, we focus on InSb wells for which the SO
coupling is strong as compared with GaAs. The new bands
Ey ;,4, (41, 4y = *1) for nonzero I' and # display anti-
crossings around k. [36], Fig. 2(a) (dashed lines), and a
strong spin mixing in (o3), Figs. 2(b) and 2(c) [37], near the
anticrossing. This follows from an interplay of intersub-
band couplings: when either one of them is null, no spin
mixing occurs as only same-spin branches couple in this
case [see Eq. (S56) and discussion following it in the SM
[20]]. For completeness, in the SM [20], we present the spin
textures along the constant-energy contours Ey ; ;, = Ep,
E. [Fig. 2(a)].

Novel topological phenomena in 2DEGs?— We con-
jecture that, similar to chiral magnets, a PSL formed on top
of an electrically drifting Fermi sea [38] can possibly lead
to topological [13] and Skyrmion [39] Hall effects in
ordinary GaAs wells. These phenomena could arise from
two mechanisms: (i) the Lorentz force from the emergent
magnetic field due to injected electrons following the real-
space spin texture and (ii) the induced emergent electric
field (Faraday induction) arising from the time-dependent
topological flux of the drifting PSL, which can drive the
PSL lattice sideways [5]. Point (ii) is more likely to occur in
our system [40]. Recent experiments [38,41] have success-
fully demonstrated the electrically induced coherent propa-
gation of helices in GaAs wells [42]. Further theoretical
work similar to that in Ref. [19] is needed to fully describe
the quantum transport properties of our PSL on top of a
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drifting Fermi sea, which can unveil topological phenom-
ena in ordinary GaAs wells.
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