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We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent
diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the
incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts
for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction
patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will
expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials
environments, especially where sample manipulation is difficult.
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In materials, nanoscale distributions of strain and lattice
distortions in crystals often dictate performance and proper-
ties [1], but are difficult to measure under realistic working
conditions. Increasingly, Bragg coherent x-ray diffraction
imaging (BCDI) is being utilized at synchrotron sources to
address this challenge by nondestructively imaging nano-
scale strain fields in crystalline materials in three dimen-
sions (3D) using penetrating hard x-rays [2–7]. While these
studies have shown great promise, the breadth of feasible
3D BCDI measurements could expand substantially if
current experimental requirements such as sample rotation
could be eliminated without sacrificing imaging capability.
In a Bragg diffraction experiment, the reciprocal space

volume about a Bragg peak can be measured by finely
scanning the wavelength of the incident beam (as opposed
to its relative angle). Recent investigations have success-
fully mapped 3D Bragg peaks from crystals in this manner
[8–10], but numerical phase retrieval and inversion of such
measurements into 3D real space images have yet to be
demonstrated. This capability would enable new strain
imaging studies of materials in environments where sample
manipulation is difficult and the details of nanoscale strain
distribution and evolution remain elusive—for example,
during high-temperature crystal synthesis.
Here, we present a new variable-wavelength BCDI

(vwBCDI) approach that reconstructs a 3D image of strain
and density of a crystalline nanoparticle from x-ray energy
scan measurements, eliminating the need to rotate the
sample. To reconstruct 3D images from this type of data,
we introduce a new phase-retrieval approach designed to
handle x-ray wavelength (λ) variability in BCDI, and we
demonstrate the method with experimental data.
Using BCDI, lattice distortions within a 3D nanocrystal

can be determined from the coherent diffraction intensity
distribution about a Bragg peak [4,11]. A typical mono-
chromatic BCDI experiment is shown schematically in

Fig. 1(a), which depicts a nanocrystal (ρ) that is illuminated
with a coherent x-ray plane wave. The incident beam wave
vector ki, exit beam wave vector kf, and nanocrystal are
oriented such that the scattering vector q ¼ kf − ki is in the
vicinity of a Bragg reflection at the reciprocal lattice point
GHKL. (Here, jkj ¼ 2π=λ.) The 3D intensity distribution
surrounding the GHKL Bragg peak from ρ is shown
schematically in Fig. 1(b) as a yellow isosurface. Near
the Bragg condition, an area detector will measure a cut
through this 3D intensity distribution along the plane normal
to kf that intersects q [12,13]. Different slices can be
measured by varying Q≡ q −GHKL, the reciprocal space
distance from the center of the area detector to the Bragg
peak. As shown in Fig. 1(a), in a typical single-wavelength
experiment, Q changes over the course of a scan of the
sample angle θ (� ∼ 0.5°) while jqj remains fixed. Such an
angle scan (rocking curve) is depicted in Fig. 1(b) as a series
of parallel grey planes slicing through the 3D Bragg peak
intensity distribution. Thus, the Bragg 3D intensity distri-
bution is recorded slice by slice. The oversampled intensity
encodes the magnitude, but not the phase, of the 3D Fourier
transform of the diffracting nanocrystal. To form a strain-
sensitive image of the crystal, the set of measured slices that
sample the 3D coherent intensity distribution are phased
using reconstruction algorithms [14] that utilize forward and
inverse discrete 3D Fourier transforms (F 3D and F−1

3D).
However, because current BCDI reconstruction approaches
apply 3D discrete Fourier transforms directly to the data set,
measurements that utilize these algorithms need to be
performed using a fixed x-ray wavelength.
An alternative method of measuring the 3D Bragg

coherent diffraction intensity distribution is to vary the
length of the scattering vector q while keeping the sample
orientation fixed. This can be done by scanning the x-ray
wavelength to change jkj and jqj, thus varyingQ as shown
in Fig. 1(c) [8–10].As compared to themonochromatic case,
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such a scanwill result in a different (though equally valid) set
of slices with which to assemble the 3D Bragg intensity
distribution [Fig. 1(d)]. However, such a data set is not
suitable for discrete F 3D-based BCDI reconstruction algo-
rithms because jkj is not constant over the scan, and the
scaling of reciprocal space in the detector changes at every
measured slice. In the work featured here, this scaling
changes by ∼4% from the beginning to the end of the scan.
Without accounting for the changing wavelength in the data
set, this scaling builds in an artificial asymmetry in the fringe
pattern about the Bragg peak. This situation is problematic
and should not be ignored in BCDI because asymmetries of
this order are also indicative of lattice imperfections in the
crystal [15]. Interpolation of vwBCDI data onto a regular
q-space grid could be performed in order to utilize current
algorithms. However, typical data interpolation approaches
alter the observed Poisson photon counting statistics of the
underlying intensity probability distribution function
[16,17] in weakly scattering regions that often convey
high-spatial-resolution information.
Thus, reconstructing a 3D image from a vwBCDI meas-

urement without interpolating intensity data requires 3D
Fourier transform operations that account for the changing
wavelength on a slice-by-slice basis. A related concept has
been successfully implemented in reconstructing broadband
forward scattering coherent diffraction patterns [18], but did
not dealwith the reconstruction of a reciprocal spacevolume.
To address this challenge for the Bragg geometry, we
leverage theproperties of theFourier slice projection theorem
[19,20] and the relationship between spatial sampling and
array size in a 2D discrete Fourier transform to define a slice-
by-slice 3D Fourier transform appropriate for vwBCDI
experiments. Our approach uses these concepts to perform
simultaneous Fourier transformation and interpolation of
each λ-dependent slice of the Bragg intensity distribution.

In a monochromatic BCDI scan of a Bragg peak in which
Qj varies over j ¼ 1;…; J two-dimensional intensity mea-
surements, the jth 2D wave field at the detector is given by
[12,13,21]: ψ j ¼ FRQjρ, in accordance with the Fourier
slice projection theorem. In this expression, Qj is a
multiplicative linear phase gradient defined asQj ¼ exp½ir ·
Qj� that displaces the detector plane in reciprocal space
away from Bragg peak maximum (the origin in Q). R is a
3D → 2D projection along the direction of kf, F is a 2D
Fourier transform, and ψ j is the far-field exit wave in the
detector. The measured intensity is then given by Ij ¼ jψ jj2.
In calculating ψ j, F is typically implemented with a

discrete 2D Fourier transform of a pixelated image array. In
this case, the relationship between the pixel size in real and
reciprocal space in the plane is fixed [22]. In each
dimension of the projection plane, the pixel size in real
space is given by psamp ¼ λD=ðNpixpdetÞ, where Npix is the
number of pixels along one dimension of the square array,
pdet is the edge size of a square pixel in the area detector
used in the measurement, and D is the sample-to-detector
distance. In vwBCDI, we aim to maintain a constant psamp

for all ψðλjÞ. To satisfy this condition when D and pdet are
fixed, we can consider Npix as a free parameter that varies
with λj such that λj=NpixðλjÞ is constant. So long asNpix for
all λj is greater than the number of pixels in the physical
detector (Ndet), as in the case described here, then a direct
comparison can be made between ψðλjÞ and experimental
measurements.
Based on this principle, we introduce a modified 2D

Fourier transform operator F λ ¼ S−1λ FSλ that maintains a
constant psamp by varying Npix. Here, Sλ is an operator that
pads the effective number of pixels in the array to an integer
value NpixðλjÞ that scales with λj, enforcing the appropriate
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FIG. 1. This schematic depicts an isolated nanocrystal illuminated with a coherent beam and oriented such that the incident (ki) and
exit (kf) beam wave vectors satisfy a Bragg condition for the HKL reflection (denoted by the reciprocal space vectorGHKL). In such an
experiment, the area detector accesses a 2D slice through the 3D reciprocal space intensity pattern. To measure various components of
the 3D Bragg peak intensity distribution, the scattering condition q ¼ kf − ki must be changed relative to GHKL, thus changing
Q ¼ q −GHKL. In a monochromatic experiment [BCDI rocking curve, panels (a) and (b)], this is done by changing the angle of the
sample at a fixed jqj. Alternatively, with a fixed sample position [vwBCDI scan, panels (c) and (d)], the reciprocal space volume about
the Bragg peak can be sampled by changing the wavelength of the x-ray beam.
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pixel sampling of each ψ j via the discrete 2D Fourier
transform. With this approach, the pixel size at the sample
in the projection plane is set by experimental parameters.
For a λ scan with a fixed step size of δλ, psamp of the real
space image is given by ðδλÞD=pdet. Additionally, the
integer range of Npix is set by the largest λ in the scan,
Nmax

pix ¼ λmaxD=ðpsamppdetÞ. Therefore, invoking Sλ for a
vwBCDI data set requires that the projection plane array be
sampled with pixels of size psamp and resized to ðNmax

pix þ
1 − jÞ in both dimensions for a given λj. The S−1

λ operator
then resizes the array to a fixed size for all λj. In the case of
F λ, this size is Ndet × Ndet, where Ndet is the number of
physical pixels in the area detector.
Thus, the coherent wave field at the detector in a

vwBCDI experiment is given by

ψ j ¼ F λjRQjρ: ð1Þ

To better illustrate the details of this calculation, we step
through these operations. To begin, we define a conjugate
pair of orthogonal spatial coordinates based on the ori-
entation of kf, (rx, ry, rz) and (qx, qy, qz). The former is the
basis for the real-space vector r and the latter for the
reciprocal space q and Q. In real space, two directions rx
and ry are normal to kf and are aligned with the edges of a
square area detector [outlined in black in Fig. 1(b)]. The
third direction rz is parallel to kf. qx, qy, and qz are oriented
parallel to their conjugate r-space counterparts.
A visual representation of the operators in Eq. (1)

is shown in Fig. 2. First, the crystal ρ is multiplied by a
phase factor that depends onQj, corresponding to a slice of
the Bragg peak measured at a given λj. The complex 3D
quantity Qjρ is then projected onto the (rx, ry) plane,
sampled with real space pixels of size psamp. By

manipulating the number of pixels in the image array,
the F λj operator adjusts the scaling of ψ j to correspond to
λj. In this way, a series of diffraction patterns fψ1;…;ψJg
cutting through the Bragg intensity distribution can be
generated for a scan of λ, as shown in Fig. 2(g).
In order to enable phase retrieval and 3D image

reconstruction, a conjugate inversion procedure must be
introduced that converts the reciprocal space information in
fψ1 � � �ψJg back to real space to recover ρ. Here, we take
advantage of another feature of the Fourier slice projection
theorem, i.e., that a 2D → 3D backprojection operation
(R†) can be used to reassemble a 3D object from a series of
2D projections. We also utilize the fact that each ψ j is offset
from the Bragg peak byQj. The component ofQj along kf

encodes the spatial frequency along rz for the projected
structural information in the (rx, ry) plane contained in ψ j.
Thus, ρ can be expressed by inverting the operators in
Eq. (1) and summing the resulting backprojections,

ρ ¼
XJ
j¼1

Q�
jR

†F−1
λj
ψ j: ð2Þ

In this expression, F−1
λj

¼ S−1λj F
−1Sλj , and Q�

j ¼ exp½−ir ·
Qj� is the complex conjugate of Qj. In this expression, we
use S−1

λj
to resize the real-space projection image to a size

of Nmax
pix × Nmax

pix .
Here, we step through the inverse operators used in

Eq. (2). Starting with a given ψ j (amplitudes and phases
known),F−1

λj
yields a projection ofQjρ on the (rx, ry) plane

with pixel size psamp. Next, the backprojection operatorR†

uniformly replicates this projection along rz. Finally, Q�
j

imparts an oscillating phase profile that encodes the
appropriate spatial frequency along rz for this slice. Q�

j

j=1

j=J
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FIG. 2. Schematic of a slice-by-slice calculation of vwBCDI diffraction patterns. (a) The nanocrystal ρ is multiplied by a phase factor,
resulting (b) in Qjρ. (c) The 3D quantity Qjρ at a given λ is projected onto the (rx, ry) plane via the projection operator R. In order to
properly scale the diffraction pattern for this λ, the operator F λ is invoked, defined as S−1λ FSλ, shown in (d)–(f). (d) Sλ changes the
number of pixels in the image to NpixðλjÞ by padding with zeros. (e) A 2D Fourier transform F of the padded projection array is applied.
(f) S−1λ resizes the resulting array back to a fixed pixel size, in this case Ndet × Ndet. (g) In this manner, each slice (gray plane) through a
3D Bragg peak intensity distribution (yellow isosurface) is calculated resulting in the set fψ1;…;ψJg that mimics a vwBCDI
measurement. The inverse process of reconstructing ρ from fψ1;…;ψJg involves inverting the above operators (including F−1

λ ), and is
demonstrated graphically in Supplemental Fig. S1 [23].
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can also encode phase gradients along rx and ry that
account for displacement of the diffraction pattern from the
central pixel of the detector at each slice. The quantity
Q�

jR
†F−1

λj
ψ j is calculated for all J diffraction patterns and

summed. This process is visualized in Supplemental
Fig. S1 for the simulated nanocrystal featured in
Fig. 2(a) [23]. It is shown that as the number of summed
terms approach J ¼ 100, the morphology and phase of the
summation converge to ρ.
We note that F λ and F−1

λ generalize the forward and
inverse Fourier transform operations that describe the
reciprocal space 3D volume about a Bragg peak as
measured by an area detector in a variable-wavelength
measurement. Effectively, when Sλ and S−1λ are unity, the
operations described in Eqs. (1) and (2) are equivalent to
the traditionally used forward and inverse discrete 3D
Fourier transforms. Thus, by integrating them into a
phase-retrieval algorithm, F λ and F−1

λ enable phase
retrieval of vwBCDI data sets. Common phasing algo-
rithms rely on minimizing the sum-squared error between
the measured intensity distribution and the far-field exit
wave of the reconstructed object, ϵ2 ¼ ∥jψ j − ffiffi

I
p

∥2. We
adopt the same approach here, defining the sum-squared
error as ϵ2 ¼ P

j∥jψ jj −
ffiffiffiffi
Ij

p
∥2. This error metric then

becomes the basis for determining a gradient ∂λ for phase
retrieval, after Ref. [21].

∂λ ¼
XJ
j¼1

Q�R†F−1
λ

�
ψ j −

ffiffiffiffi
Ij

p ψ j

jψ jj
�
: ð3Þ

Following Ref. [14], we obtain the modulus constraint for
vwBCDI, Pmρ ¼ ρ − 1

2
∂λ, that enforces consistency

between the amplitudes of ψf1;…;Jg and the experimentally
measured intensity patterns. The modulus constraint, when
used in combination with an object-bounding support, is
central to iterative BCDI phase-retrieval algorithms such as
hybrid input or output (HIO) and error reduction (ER) [24].
(Pseudocode for ER/HIO implemented with ∂λ is included
in the Supplemental Material [23].) With ∂λ, these recon-
struction algorithms can be applied to experimental
data.
To demonstrate the phase-retrieval approach introduced

above, vwBCDI measurements were performed on a sub-
micron-sized Au nanocrystal [25]. Measurements were
performed with a mirror-focused coherent x-ray beam at
the Sector 34-ID-C beam line at the Advanced Photon
Source. The 111 Bragg condition was satisfied at 9 keV (far
from any Au absorption edges) with a symmetric diffraction
geometry (Bragg angle of θBr ¼ 17°). In this experiment,
D ¼ 0.62 m,pdet ¼ 55 μm, andNdet ¼ 256. The scattering
geometrywas fixed, and the energy of the incident beamwas
scanned from 8.85 to 9.15 keV in 6-eV increments (corre-
sponding to δλ ∼ 8.9 × 10−4 Å and λmin ¼ 1.378 Å). The
synchrotron undulator gapwas adjusted at every energy step

in order to provide nearly constant flux at all λj [10]. Under
these conditions, psamp ¼ 1.0 nm and Nmax

pix ¼ 1576 [26].
For comparison, data were also collected at 9 keV with a
rocking curve (θBr � 0.35°) in 0.01° angular increments.
HIO and ER were used with the ∂λ gradient to recon-

struct a 3D image of the Au crystal from the vwBCDI data,
and standard F 3D-based HIO and ER were applied to the
rocking-curve data. Both data sets were successfully
phased with comparable rates of convergence, and the
resulting reconstructions are shown in Fig. 3. A 3D
isosurface of the electron density of both reconstructions
is featured, showing regions of higher lattice displacement
especially near the edges and corners of f111g facets, as
has been observed previously in gold nanoparticles pre-
pared by thermal dewetting of films [27]. Direct compar-
isons of the images is difficult because the measured
reciprocal space volumes and sampling of the Bragg peak
from the energy and rocking scans are inherently different,
leading to expected differences in the pixelation and
resolution of features in the reconstructions. Nonetheless,
the lattice displacements traced along equivalent lines of
both reconstructions agree well [Fig. 3(e)]. We note that for
larger crystals, refraction effects can become significant
and should be accounted for [28].
The good agreement between the two reconstruc-

tion methods demonstrates that vwBCDI preserves the
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FIG. 3. (a) A density isosurface of a Au nanocrystal recon-
structed using vwBCDI. Coloring corresponds to near-surface
lattice displacements. f111g facets are labeled, and the arrow q111
indicates the scattering vector direction of the measured Bragg
peak. (b) The lattice displacement within the nanocrystal along
the gray plane in (a). (c),(d) Corresponding images of the same
crystal reconstructed from rocking-curve-based BCDI data.
(e) Comparison of lattice displacement lineouts along the dotted
lines in (b) and (d). Error metrics from vwBCDI and standard
rocking-curve phase retrieval are shown in (e).

PRL 117, 225501 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

25 NOVEMBER 2016

225501-4



strain-sensitive 3D imaging capability of current rocking-
curve-based BCDI methods without requiring any sample
motion. This capability will greatly simplify certain in situ
strain measurements in environments that are difficult to
accurately rotate about a precise center of rotation or that
are otherwise cumbersome. The current formalism does not
incorporate the energy dependence of the scattering factor.
Thus, vwBCDI scans should be performed far away from
absorption edges of the elements in the sample. However,
enabling element-sensitive vwBCDI may be feasible with
near-edge energy scanning if additional resonant scattering
effects are incorporated into the phase-retrieval algo-
rithm [29].
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