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We consider a realistic bosonic N-particle model with unitary interactions relevant for Efimov physics.
Using quantum Monte Carlo methods, we find that the critical temperature for Bose-Einstein condensation
is decreased with respect to the ideal Bose gas. We also determine the full momentum distribution of the
gas, including its universal asymptotic behavior, and compare this crucial observable to recent experimental
data. Similar to the experiments with different atomic species, differentiated solely by a three-body length
scale, our model only depends on a single parameter. We establish a weak influence of this parameter on
physical observables. In current experiments, the thermodynamic instability of our model from the atomic
gas towards an Efimov liquid could be masked by the dynamical instability due to three-body losses.
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First predicted in 1970 [1], the Efimov effect describes
the behavior of three strongly interacting bosons when any
two of them cannot bind. At unitarity, when the scattering
length diverges, the three-body bound states are scale
invariant and they form a sequence up to vanishing binding
energy and infinite spatial extension. Efimov trimers had
been intensely discussed in nuclear physics, but it was in an
ultracold gas of caesium atoms that they were finally
discovered [2]. To observe Efimov trimers, experiments
in atomic physics rely on Feshbach resonances [3], which
allow one to instantly switch a gas between weak inter-
actions and the unitary limit. Such a control of interactions
is lacking in nuclear physics or condensed matter experi-
ments, and singular interactions can be probed there only in
the presence of accidental fine tuning [4]. Beyond the
original system [2], Efimov trimers have now been
observed for several multicomponent systems, including
bosonic, fermionic, and Bose-Fermi mixtures [5–7]. These
experimental findings are interpreted in terms of the theory
of few-body strongly interacting quantum systems. For
three identical bosons in three dimensions, a complete
universal theory is available, on and off unitarity [4].
Further theoretical work is aimed at understanding bound
states for more than three bosons, mixtures, and the effects
of dimensionality.
Near-unitary interparticle interactions also impact the

thermodynamics of the atomic gas, the description of which
presents a challenge beyond the traditional theory of the
Efimov effect. In addition, mean-field theory does not
apply to infinite interactions [8], and the virial expansion
[9] fails to describe the low-temperature state. Moreover, in
atomic-physics experiments, strong interactions enhance
the three-body loss rate, making the gas of bosons unstable.
A characterization of the universal dynamics of these losses
has been recently achieved [10–12]. On the other hand, a
single breakthrough experiment [13] has addressed the

low-temperature thermodynamics for a unitary bosonic gas,
coming to the conclusion that equilibrium was approached
faster than the system lifetime. The importance of this
system stems from its universal character: All differences
between atomic species may be encoded in a single three-
body parameter, related to the van der Waals length [14].
However, this prominent experiment could not be inter-
preted univocally, as first-principles theoretical predictions
were lacking. In the present work, we obtain these
predictions for a model which shares the experimental
system’s universality. We develop a novel quantum
Monte Carlo algorithm [15] that overcomes the peculiar
challenges posed by the infinite interactions. This allows us
to compute the critical temperature for Bose-Einstein
condensation, and the full momentum distribution nðkÞ
throughout the entire phase diagram, including its universal
asymptotic behavior.
In the unitary limit, the scattering length diverges, and

atomic pair interactions are powerful yet very short-ranged.
The bosonic pair correlation function gð2ÞðrÞ diverges as1=r2
at short distances r ¼ jrj, yet two isolated unitary bosons
barely hold together: They form a molecule of infinite radius
and vanishing binding energy. In thermodynamic equilib-
rium, three or more such bosons, with zero-range inter-
actions, collapse into a single point, unless the unitary pair
interactions are counterbalanced by a three-body repulsion.
In experimental systems the latter is effectively realized by
the van der Waals potential [14], so that the unitary Bose
gas is stabilized against collapse. The divergence of
gð2ÞðrÞ persists in the gas, with a finite contact density
c2 ¼ limr→0ð4πrÞ2gð2ÞðrÞ. The large-k asymptotics of the
momentum distribution [16,17] is governed by Tan’s contact
parameter C2 ¼ c2V (where V is the system volume), and it
decays as nðkÞ≃ C2=k4 for k → ∞.
We considerN bosons at temperatureT in a periodic cubic

box (thermodynamic NVT ensemble). Pair interactions are
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of zero range and infinite depth, and the resonant two-body
bound state realizes an infinite scattering length. In addition,
any three particles a, b, c are subject to a hard cutoff
R > R0 on their hyperradius R, defined as the mean of their
squared pair distances:R2 ≡ ðr2ab þ r2bc þ r2acÞ=3. This real-
istic model describes ultracold atomic ensembles with an
interaction rangemuch smaller than the scattering length, the
interparticle distance, and the thermal deBrogliewavelength.
The two-body interactions, with their infinite scattering
length, provide no scale. The model’s phase diagram thus
depends on two dimensionless numbers, namely, the thermal
de Broglie wavelength λthρ

1=3, and the three-body cutoff
R0ρ

1=3, both in units of the typical interparticle distanceρ−1=3

[where λth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πℏ2β=m
p

, β ¼ 1=ðkBTÞ, and ρ ¼ N=V].
At high temperature, three-particle effects are suppressed,
and themodel depends only on λthρ1=3. In experiments at low
temperature, three-body correlations lead to strong recombi-
nation losses, with a loss rate scaling as ∼T−2 [10–12], the
predominant source of instability of the system. In contrast,
our model conserves particle number.
Path-integral quantumMonte Carlo techniques allow us to

solve this model from first principles, that is, without
systematic errors. Computational challenges are posed by
the divergence of gð2ÞðrÞ at contact [see Fig. 1(b)] and by the
need to determine nðkÞ for large momenta k [see Fig. 1(d)].
This corresponds to computing the single-particle correlation
function gð1ÞðrÞ—the inverse Fourier transform of nðkÞ—at
small r, close to its cusp singularity at r → 0 [see Fig. 1(c)].
Our path-integral quantum Monte Carlo algorithm
[15,18–20] samples both closed and open path-integral
configurations [cf. Fig. 1(a)]. The former give access to
the superfluid fraction ρs=ρ (via the winding-number
estimator [21]) and to the pair-correlation function gð2ÞðrÞ
(from which we extract the contact density c2). Open
configurations, in contrast, sample the single-particle corre-
lation function gð1ÞðrÞ, and give access to the normalized
momentum distribution [satisfying

R

dknðkÞ=ð2πÞ3 ¼ N in
the normal gas]. A dedicated estimator allows us to sample
nðkÞ for arbitrarily large momenta k [cf. Supplemental
Material (i) [22]].
We include zero-range unitary interactions between two

bosons through the exact two-body propagator [23,24],
and treat them with a highly efficient direct-sampling
approach [15]. The many-body density matrix is then built
via the pair-product approximation. The hyperradial cutoff
is included via the Trotter breakup [18], and an effective
value of R0 is obtained—for a finite imaginary-time
discretization—through the comparison with the expres-
sion for the hyperradial wave function of a single universal
trimer [15,23]. For three unitary bosons, the length scale R0

sets a lower bound on the Efimov energy spectrum, and
specifies a three-body ground state. At low temperature,
our Monte Carlo simulations for N ¼ 3 allow us to
obtain excellent agreement of the hyperradial probability

distribution and the momentum distribution for our model
with the corresponding quantities for the universal Efimov
trimer [4,25] [see Fig. 2(a) and Fig. 2(b)], providing also a
parameter-free check of our computer program.
In the thermodynamic NVT ensemble, unitary bosons

phase separate below a given temperature into a normal or
Bose-Einstein-condensed gas dominated by entropy and a
high-density Efimov liquid of low potential energy

(c) (d)

(a) (b)

FIG. 1. Correlation functions for two unitary bosons. (a) Open
(left) and closed (right) co-cyclic configurations in the path-
integral representation. Closed configurations yield gð2ÞðrÞ. Open
configurations yield nðkÞ and its inverse Fourier transform
gð1ÞðrÞ. (b) Pair-correlation function gð2ÞðrÞ (distance distribution
in closed configurations), featuring a r−2 divergence at small r.
(c) Cut of gð1ÞðrÞ (distribution of the distance between open ends),
for r ¼ ðx; y; 0Þ, illustrating the cusp at r≃ 0. (d) Momentum
distribution nðkÞ with asymptotic decay, ∝ 1=k4, at large k.

(a) (b)

FIG. 2. Correlation functions for three unitary bosons. (a) Hy-
perradial probability distribution for three co-cyclical bosons
with hyperradial cutoff at low temperature (cyan dashed line) and
for the universal Efimov trimer (black solid line, from Ref. [4]).
(b) Momentum distribution for three co-cyclical bosons (cyan
dashed line), and for the universal trimer (black solid line, from
Ref. [25]), in units of the trimer binding momentum κ0.
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(see Fig. 3(a) and Ref. [23]). An equilibrium liquid bubble
forms inside the gas [Fig. 3(b)], and the nucleation process is
reversible across the coexistence line. For R0 → 0, the gas-
to-liquid condensation energy ∝ 1=R2

0 overcomes the gas
entropy loss at arbitrarily high temperatures, so that
the coexistence line starts at λthρ1=3 ¼ R0ρ

1=3 ¼ 0. In the
phase-coexistence region, the free energy FN

coexðlÞ is com-
posed of two terms, corresponding to the Efimov-liquid
nucleus of l particles and to the gas of the remaining N − l
particles. An analytical model, based on the virial expansion
of the gas [9] and the known ground-state energies for small
Efimov-liquid nuclei [26] (supposed incompressible),
allows us to model the excitation free energy [see
Supplemental Material (v) [22]]. In the homogeneous gas
phase,FN

coexðlÞmonotonically increaseswith l [Fig. 3(c)]. At
lower temperatures, the gas becomesmetastable, with a free-
energy barrier at a critical cluster size l�. The nucleation rate
per volume is proportional to expð−βΔFÞ, where ΔF ¼
FN
coexðl�Þ − FN

coexð0Þ is the free-energy barrier to overcome

the critical cluster size l�. At low temperature, βΔF and,
therefore, the characteristic nucleation time for the Efimov
liquid remain finite [see Fig. 3(c)]. The observed long
experimental lifetime [13] is consistent with the idea that
the phase-separation instability does not take place, in
current experiments, as three-body losses effectively desta-
bilize liquid droplets before the critical nucleus size l� ≃ 5 is
reached. A study of the many-body quantum dynamics will
be needed to confirm this hypothesis.
In the stable region of the phase diagram, the momentum

distribution nðkÞ is, in principle, obtained as the Fourier
transform of gð1ÞðrÞ, the distribution for distance vectors of
open configurations [cf. Fig. 1(a)]. This estimator, however,
poorly samples the short-distance cusp in gð1ÞðrÞ [equiv-
alently, the large-k behavior of nðkÞ]. Our approach is
rather based on an average of the analytical two-body
expression, to determine nðkÞ at arbitrarily large k
[see Supplemental Material (i) [22]]. The asymptotic
behavior of nðkÞ ¼ C2=k4 for k → ∞ is also contained

(b)

(a)

(d)

(c)

(e)

FIG. 3. Equilibrium phase diagram of unitary bosons. (a) Contact density c2ρ−4=3, as a linear interpolation of numerical results
[extracted from gð2ÞðrÞ, for N ¼ 64]. White stars: transition between normal gas and superfluid (Bose-Einstein condensed) phase. Black
crosses: Phase-separated points. Gray area: Phase-coexistence region [23]. (b) Stable Efimov-liquid droplet coexisting with a normal gas
(N ¼ 256). (c) Excitation free energy for the Efimov-liquid nucleation, vs nucleus size l. λthρ1=3 varies between lines (see labels),
between 0.5 (monotonically increasing, red line) and 0.9 (barrier, blue line). The hyperradial cutoff is fixed (R0ρ

1=3 ¼ 0.03), and the
phase-separation region sets in at λthρ1=3 ≃ 0.66. (d) Contact density c2ρ−4=3 vs λthρ1=3, for R0ρ

1=3 ¼ 0.052: Virial expansion (black
dashed line) and numerical results, via the nðkÞ and gð2ÞðrÞ estimators (crosses, circles). In the phase-coexistence region, the liquid
and gas phases have different contact densities (for the gas, the virial expansion is used). (e) Momentum distribution [in units of the
Fermi momentum kF ¼ ð6π2ρÞ1=3] for parameters corresponding to points A, B, and C, in panel (a).
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in the contact density, obtained from closed-path configu-
rations [see Fig. 3(d)]. In the normal phase, the small-k part
of the momentum distribution nðkÞ resembles the one of
ideal bosons: The peak at k ¼ 0 corresponds to the
Maxwell-Boltzmann distribution expð−βk2=2Þ in the
classical limit (at high temperature), and the narrowing
at lower temperature is enhanced by bosonic statistics [see
Fig. 3(e)]. At large k, nðkÞ crosses over into the C2=k4

asymptotic behavior, with a crossover point which scales as
k=kF ∝ 1=ðλthρ1=3Þ for large temperature, where kF ≡
ð6π2ρÞ1=3 is the Fermi momentum. In the phase-coexist-
ence region, we obtain two different contact densities for
the gas and for the Efimov liquid [see Fig. 3(d)].
Throughout the homogeneous region, the momentum

distribution only depends weakly on R0ρ
1=3, both in the

full nðkÞ and in its asymptotic tail, underlining the generality
of the model under study. The slow decrease of c2 for
increasing R0ρ

1=3 (absent at high temperature, λthρ1=3 → 0)
corresponds to a small suppression of gð2ÞðrÞ at short
distance, indirectly caused by the hyperradial cutoff.
At high temperature, our first-principles results for the
contact density rapidly fall below the predictions of the

virial expansion [27–29] [Fig. 3(d)], leveling off at inter-
mediate temperature, and finally decreasing at lower temper-
ature. This nonmonotonic behavior was already qualitatively
predicted [29]. The low-temperature values of c2ρ−4=3 fall in
the same range of previous zero-temperature approximate
results [30–32] [cf. Supplemental Material (ii) [22]].
For large three-body cutoff (R0ρ

1=3 ≳ 0.16), the normal
gas undergoes Bose-Einstein condensation before phase
separation sets in. At finite k, nðkÞ has very small finite-
size effects, making the comparison with experiments
feasible. Data for harmonically trapped Rb atoms [13]
are available up to k=kF ≃ 3 and they are considered
equilibrated for k=kF ≳ 0.5. At small k, the harmonic-trap
geometry has the strongest influence. Up to momenta
k ≈ kF, the experimental curves overlap with the theoretical
data [see Fig. 4(a)]. As the asymptotic k−4 behavior of nðkÞ
sets in for the numerical curve (k≳ 1.1kF, at the chosen
temperature), the experimental curve remains higher. This
deviation is difficult to reconcile with our model, as the k−4

prefactor is expected to decrease even further at lower
temperature [see Supplemental Material (ii) [22]].
The condensate fraction is related to the k ¼ 0 compo-

nent of nðkÞ, N0=N ¼ nðk ¼ 0Þ=ðNVÞ. Below the critical
temperature Tc, it remains nonzero for N → ∞, with finite-
size corrections ∝ N−1=3. In the normal phase, in contrast,
the large-N limit of N0=N vanishes. These two behaviors
are clearly distinguished in the data [see Fig. 4(b)]. The
scaling of the superfluid fraction yields a precise estimate
of the critical temperature [33] [see Fig. 4(c) and
Supplemental Material (iii) [22]]. In the unitary Bose
gas, Tc is reduced by 10%: The critical value of λthρ1=3

is between 1.44 and 1.48 [see Fig. 3(a)], while the ideal-
bosons transition [34] is at λthρ1=3 ≃ 1.377. The deviation
of Tc from T0

c (the ideal-bosons critical temperature) is
larger for smaller values of R0ρ

1=3. It is instructive to
compare nðkÞwith the ideal-gas curve. Unitary interactions
cause a depletion of the condensate, i.e., a decrease of
N0=N. At temperature T ≲ Tc, this follows from the
negative shift of the critical temperature, Tc < T0

c. While
the k ¼ 0 component of nðkÞ is smaller, on the other hand,
the tail of the distribution is more important [cf. the power-
law k−4 decay, vs the exponential suppression of nðkÞ for
ideal bosons]. At point D in Fig. 3(a), the depletion of the
condensate is not entirely compensated by the large-k
contribution [see Supplemental Material (iv) [22]]. This
leads to the reweighting of the unitary gas momentum
distribution with respect to the one of the ideal Bose gas,
without introducing any new features.
Both for three-body and many-body states of unitary

bosons, nðkÞ has subleading oscillations around the C2=k4

asymptotic tail. These consist in a log-periodic function of
k, modulated by C3=k5 [25,35]. The three-body contact
parameter C3 vanishes at the length scale of the short-range
hyperradial repulsion between atoms, induced by the van

(a)

(b)

(c)

FIG. 4. Full momentum distribution nðkÞ in the Bose-Einstein-
condensed gas phase. (a) nðkÞ at λthρ

1=3 ¼ 1.545, R0ρ
1=3 ¼

0.184 [point D in Fig. 3(a)]. First-principles results for N ¼ 64,
128, and 256 (black circles, green squares, brown diamonds,
respectively), and ∝ C2=k4 asymptotic behavior for k → ∞ (for
N ¼ 64, black solid line). Dashed lines are experimental data of
Ref. [13] for two different densities. The momentum distribution
for N ¼ 256 ideal bosons is also shown (cyan solid line).
(b) Scaling of the condensed fraction N0=N with the system
size, in the normal and condensed phases. The upper curve (at
T < Tc) corresponds to the parameters in panel (a), and the exact
numerical data are fitted by N1=3ðN0=NÞ≃ 1.06þ 0.14N1=3

[same symbols for N as in panel (a)]. The lower curve is at
λthρ

1=3 ≃ 1.373 (corresponding to T > Tc), and is fitted by
N1=3ðN0=NÞ≃ 1.71N−1=6. (c) Rescaled superfluid fraction vs
temperature, at R0ρ

1=3 ¼ 0.184. The crossing point at T=T0
c ≃

0.9 (corresponding to λthρ1=3 ≃ 1.45) shows that Tc is lowered by
10% with respect to the ideal Bose gas, in the limit N → ∞.

PRL 117, 225301 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

25 NOVEMBER 2016

225301-4



derWaals potential [14] or by the explicit hyperradial cutoff
R0. Thus the subleading oscillations can, in our model, only
be observed for k≲ 1=R0. For our high-temperature results
[cf. Fig. 3(e)], the asymptotic tail of nðkÞ kicks in at
k > 1=R0, where C3 is effectively zero, and we do not
expect visible subleading corrections. At low temperature,
however, the crossover into the asymptotic tail is at k ≈
1=R0 [see Fig. 4(a)]. Thus, the subleading oscillations are
possibly observable within the three-body-cutoff model, for
a slightly smaller value of T or R0, despite being beyond the
current resolution.
In conclusion, we have computed the equilibrium phase

diagram and the momentum distribution of the unitary
Bose gas from first principles, overcoming the technical
challenges through a novel quantum Monte Carlo algo-
rithm [15]. Our theoretical predictions will most easily be
checked in the currently available homogeneous traps
[36,37], which are less subject to three-body losses than
the traditional harmonic traps. In the near future, we expect
high-precision experimental measurements of the super-
fluid transition and of the momentum distribution nðkÞ in
the unitary Bose gas.
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