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Lorentz-violating type-II Weyl fermions, which were missed in Weyl’s prediction of nowadays classified
type-I Weyl fermions in quantum field theory, have recently been proposed in condensed matter systems.
The semimetals hosting type-II Weyl fermions offer a rare platform for realizing many exotic physical
phenomena that are different from type-I Weyl systems. Here we construct the acoustic version of a type-II
Weyl Hamiltonian by stacking one-dimensional dimerized chains of acoustic resonators. This acoustic
type-II Weyl system exhibits distinct features in a finite density of states and unique transport properties of
Fermi-arc-like surface states. In a certain momentum space direction, the velocity of these surface states is
determined by the tilting direction of the type-II Weyl nodes rather than the chirality dictated by the Chern
number. Our study also provides an approach of constructing acoustic topological phases at different
dimensions with the same building blocks.
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Weyl fermions, originally predicted by Weyl [1] in 1929,
have recently been discovered in Weyl semimetals [2–4], a
new state of matter whose surface states form Fermi arcs
linking Weyl nodes in momentum space. In parallel,
a double-gyroid photonic crystal [5] that exhibits Weyl
nodes for electromagnetic waves has been demonstrated
[6], starting a new chapter in photonics research [7].
Following these developments, Weyl nodes for acoustic
waves have also been proposed by applying on-site unequal
coupling or chiral coupling on a graphite structure [8]. Both
coupling approaches can enable the emergence of acoustic
waves as Weyl quasiparticles in an acoustic crystal.
Recently, type-II Weyl semimetals hosting fundamen-

tally new type-II Weyl fermions have been proposed [9]
and confirmed experimentally [10–13] with both bulk
fermions and Fermi arcs observed. A type-II Weyl node
appears at the contact of electron and hole pockets and
exhibits a strongly tilted cone spectrum with a nonvanish-
ing density of states (DOS), in contrast to a pointlike Fermi
surface at a type-I Weyl node [2] with a vanishing DOS.
The type-II Weyl fermions were in fact “missed” by Weyl,
because they violate Lorentz symmetry. Therefore, unlike
the type-I case, the type-II Weyl fermions cannot be
adiabatically connected back to the Lorentz-invariant
Weyl fermions in Weyl’s prediction.
In the context of acoustics, the previous proposal based on

graphite structure [8] did not distinguish type-I and type-II
WeylHamiltonians. Consequently, only acoustic topological
surface states for type-I Weyl nodes have been studied. In
this Letter, on a platform of stacked dimerized chains of
acoustic resonators, we construct acoustic type-II Weyl
nodes following the explicit type-II Weyl Hamiltonian [9].
Unique features of this acoustic type-II Weyl system include
a distinct finite DOS and transport properties of topological

surface states. In a certain momentum space direction, the
bands of the surface states have the same sign of velocity,
which is determined by the tilting direction of type-II Weyl
nodes rather than their chirality dictated by the Chern
number. Because of the existence of an incomplete band
gap, the acoustic waves of the surface states can be scattered
bydefects and penetrate into the bulk and, thus, donot exhibit
the same robust propagation as demonstrated in Ref. [8].
We follow the line of thought in the previous proposal [8]

but adopt 1D resonator chains as building blocks. First,
since Weyl nodes are three-dimensional (3D) extensions of
two-dimensional (2D) Dirac nodes [5–7], we construct 2D
Dirac nodes by stacking 1D chains. Second, in view of the
difficulty of achieving T-symmetry breaking in topological
acoustics [14–16], we comply with the principle of
P-symmetry breaking when stacking 1D resonator chains.
Note that a 1D acoustic topological phase has been realized
in a 1D phononic crystal [17] but not with resonators. It is
thus also interesting to investigate if a 1D resonator chain
can also realize the 1D acoustic topological phase.
We start to design the 1D dimerized chain of acoustic

resonators following the Su-Schrieffer-Heeger (SSH)
model [18], which is shown in the upper part of Fig. 1(a).
The solid (open) circles indicate A- (B-) type atoms. The
left and right nearest-neighbor (NN) hopping strengths with
respect to an A-type atom are tþ δt and t − δt, respectively.
By setting zero energy offset between two sites, we can
obtain the following Bloch Hamiltonian:

H1ðkÞ ¼ 2t cosðkxaÞσx − 2δt sinðkxaÞσy; ð1Þ
where σx and σy are Pauli matrices. As shown in the lower
part of Fig. 1(a), we construct one unit cell of the chain
with two identical resonators, connected by two coupling
waveguides with different radii. The periodic boundary
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condition is applied to the left and right surfaces. Other
surfaces (blue) are treated as sound hard boundaries. The
distance between two nearest resonators is a ¼ 0.1 m. The
radius and height of each resonator (cylinder) is r ¼ 0.4a
and h ¼ 0.8a, respectively. For dimerization, we apply a
modulation of δw ¼ 0.3w to the original radius of the
coupling waveguide w ¼ 0.26r. We thus have wþ δw
(w − δw) for the left (right) coupling waveguide.
Since there are two resonators in one unit cell, we

consider only the two-band model with the two lowest
acoustic eigenmodes, whose acoustic fields simulated by
finite-element commercial software COMSOL Multiphysics are
nearly single valued for each resonator. By choosing
modulations δw ¼ 0.3w, 0, and −0.3w, we numerically
calculate three band structures as shown in Fig. 1(b). The
closing of the band gap at δw ¼ 0 indicates the topological
phase transition. For the lower bands of the left and right
parts, we can characterize their topological properties by
calculating the Zak phase [17,19,20]. The results are −π=2
and π=2 for δw > 0 and δw < 0, respectively. Note that the
Zak phase of each dimerization is a gauge-dependent value,
but the difference (ΔφZak ¼ φZak2 − φZak1 ¼ π) between
Zak phases is topologically defined [20]. Therefore, the two
dimerizations in Fig. 1(b) (red and blue) are topologically
distinct from each other.
The distinct topologies ensure the existence of interface

states between two connected dimerized chains with differ-
ent Zak phases. Hereafter, we cut and connect the two
chains through their mirror centers. In the left part of
Fig. 1(c), we apply δw ¼ 0.3w and δw ¼ −0.3w to the two
connected chains, respectively. An interface state (red line),
whose acoustic field is shown in Fig. 1(d), locates inside the
band gap. When δw ¼ 0.3w and δw ¼ 0.2w are applied to
the two connected chains, no interface state is observed
[right part of Fig. 1(c)].
We then construct 2D Dirac nodes by stacking these 1D

dimerized chains. First, we consider the following 2D
Bloch Hamiltonian:

H2ðkÞ ¼ ½2tx cosðkxaÞþ2ty cosðkyaÞ�σx−2δtx sinðkxaÞσy;
ð2Þ

where tx (ty) is the hopping strength along the x ðyÞ
direction and δtx is the modulation of the hopping strength
along the x direction. After calculation, we find that there
are two linear degenerate points in the first Brillouin zone
(BZ) if jtxj < jtyj, no degenerate points if jtxj > jtyj, and
quadratic degenerate points [21] in the corners of the 2D
BZ if jtxj ¼ jtyj. Here we choose tx ¼ −1, ty ¼ −2, and
δtx ¼ −0.5. The 2D band structure in Fig. 2(c) shows two
isolated Dirac nodes that locate at ð0;�2=3Þ in the first BZ
[Fig. 2(b)].
Second, we design the unit cell of the 2D acoustic lattice

as shown in Fig. 2(a). The inset is the schematic of the
lattice whose unit cell is enclosed by green dashed lines.
The lattice constant and parameters of the resonator are the
same with those in Fig. 1(a). The modulation δwx ¼ 0.3wx
with wx ¼ 0.26r is applied to coupling waveguides along
the x direction. Coupling waveguides along the y direction
with radius wy ¼ 2wx connect these staggered dimerized
chains. The acoustic band structure along high symmetry
lines in the first BZ in Fig. 2(d) shows two degenerate
points with frequency 0.21 × 2πc=a (718.05 Hz), where c
is the speed of sound, that locate at ð0;�0.61Þ.
These Dirac nodes can be regarded as topological

charges characterized by a winding number [22]. We find
w ¼ −1 (w ¼ 1) for the Dirac node in M2Γ (ΓM3) as
shown in Fig. 2(d). The vortex structure (not shown here) of
the normalized coefficients of the Pauli matrix from Eq. (2)
can manifest the topological feature of these nodal points.
The 2D acoustic lattice has flat edge states similar to

those in graphene [23]. We investigate the 2D structure that
is finite in the x − y direction with 15.5 unit cells (even
number of sites) and infinite in the xþ y direction, as
plotted in Fig. 2(f). The band structure of this finite system
is shown in Fig. 2(e). The red curves with a degeneracy of 2

FIG. 1. Dimerized chain of acoustic resonators. (a) The schematic of a dimerized chain and one unit cell of the acoustic structure.
(b) Three band structures with δw ¼ 0.3w, δw ¼ 0, and δw ¼ −0.3w. (c) Topologically nontrivial and trivial band structures for the
interface between two connected chains. The red line indicates the topological interface state. (d) The acoustic field of the interface state.
The green arrow points to the interface. Hereafter, blue (red) represents negative (positive) acoustic pressure (p) in the color bar.
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indicate the nearly flat edge states connecting two projected
Dirac nodes with opposite chirality. Note that the little
derivation from a perfectly flat dispersion is a result of the
real acoustic structure and hard boundary conditions
adopted. The acoustic fields are shown in Fig. 2(f). The
acoustic waves of degenerate edge states do not propagate
due to nearly zero group velocity. Note that, when the finite
ribbon consists of 16 unit cells (odd number of sites), there
will be a single edge state with a degeneracy of 1 that
traverses the BZ, which is not discussed here.
Finally, by stacking the 2D dimerized lattice along the

z direction with periodicity a and tuning the coupling
strength, we can construct a Bloch Hamiltonian for the 3D
dimerized lattice:

H3ðkÞ ¼ d0I þ dxσx þ dyσy þ dzσz; ð3Þ

where dx¼2txcosðkxaÞþ2tycosðkyaÞ, dy¼−2δtxsinðkxaÞ,
dz ¼ tz1 cosðkzaÞ − tz2 cosðkzaÞ, d0 ¼ tz1 cosðkzaÞ þ
tz2 cosðkzaÞ, and I is the 2 × 2 identity matrix. The
parameter tx (ty, tz) is the hopping strength along the x
(y, z) direction. Note that the first term in Eq. (3) plays the
role of tilting the conelike spectrum. With a strongly tilted
cone spectrum, this Hamiltonian satisfies the condition

of a recently proposed type-II Weyl Hamiltonian [9].
Here we choose tx ¼ −1, ty ¼ −2, tz1 ¼ −1, tz2 ¼ −2,
and δtx ¼ −0.5. The Hamiltonian breaks P symmetry and
respects T symmetry. We calculate the band structure as
shown in Fig. 3(b) with kz ¼ 0.5 in the kx − ky plane. Four
linear degenerate points locate at ð0;�2=3;�1=2Þ in the
3D first BZ, which are also marked in Fig. 4(a). Typically,
we plot in Fig. 3(c) the cone spectrum near the degenerate
point ð0; 2=3; 1=2Þ in the ky − kz plane. It can be seen that
the cone spectrum indeed has been strongly tilted. Since the
group velocities near the degenerate point are 2tz1 sin kz0
and 2tz2 sin kz0, where kz0 is the location of a degenerate
point, the two bands acquire the same sign of group
velocity.
Figure 3(a) shows one unit cell of the 3D acoustic

structure. The inset presents the schematic of the 3D lattice.
The radii of the coupling waveguides along the z direction
are wz1 ¼ wx þ 2δwx for the A resonator and wz2 ¼ wx
for the B resonator. The other parameters are the same as
in Fig. 2(a). The band structures in BZ planes ðkx; ky; 0Þ
and ðkx; ky; 0.51Þ are shown in Figs. 3(d) and 3(e), which
reveal a band gap at kz ¼ 0 and two degenerate points with
frequency 0.26 × 2πc=a (900.10 Hz) at kz ¼ 0.51. In the
left part of Fig. 3(f), by sweeping kz at ðkx; kyÞ ¼ ð0; 0.61Þ,

FIG. 2. The 2D acoustic dimerized
lattice. (a) The schematic of the 2D
dimerized lattice and one unit cell of
the acoustic structure. (b) The first BZ
enclosed by the blue lines. (c) The band
structure from the tight-binding model.
(d) The band structure of the acoustic
lattice. Red numbers indicate the chiral-
ity. (e) The band structure for a finite
acoustic structure. The red curves indi-
cate the flat edge states. (f) The acoustic
fields of the edge states.

FIG. 3. The 3D acoustic type-II Weyl
nodes. (a) The schematic of the 3D
dimerized lattice and one unit cell of
the acoustic structure. (b),(c) The tight-
binding band structures in the BZ plane
with kz ¼ π=2a (b) and around the Weyl
node with kx ¼ 0 (c). (d),(e) The band
structures along the high symmetry lines
in 2D BZ planes. The black (green) dot
indicates the Weyl node with positive
(negative) chirality. (f) Left: The band
structure with fixed ðkx; kyÞ ¼ ð0; 0.61Þ.
Right: Density of states.
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we get the band structure with a degenerate point at
kz ¼ 0.51. It can be seen that the two bands have the same
sign of group velocity. Therefore, there are four acoustic
type-II Weyl nodes that locate at ð0;�0.61;�0.51Þ. One
significant distinction between the type-I and type-II Weyl
nodes appears in the DOS [9]. For type-I Weyl nodes, the
DOS vanishes at the frequency of Weyl nodes. However,
the DOS acquires finite values for type-II Weyl nodes
due to the presence of unbounded two-band pockets. We
retrieve the parameters from fitting the band data with
Eq. (3) and plot the DOS that arises due to the type-II Weyl
node in the right part of Fig. 3(f). The contribution of the
rest of the isofrequency surface to the DOS is not included.
The peak indicates the location of the type-II Weyl node.
In 3D momentum space, the Weyl nodes are topological

monopoles of a quantized Berry flux characterized by
chirality [24] indicated by black “þ“(green “−“) in
Fig. 4(a) or the Chern number [26,27]. We adopt the
method from Ref. [9] and calculate the Berry phases of the
two bands over a closed sphere centered at a 3D degenerate
node (0; 2=3; 1=2) as a function of polar angle θ (0 to π). As
shown in Fig. 4(b), the Berry phase of the lower (upper)
band changes from 0 to 2π (2π to 0), which verifies that the
degenerate node is a Weyl node with a Chern number of 1.
The right inset show the Berry curvature around the Weyl
node. The same calculation can be applied to identifying
the charges of other Weyl nodes.
The nonzero Chern numbers imply the existence of

topological surface states. We investigate the 3D acoustic
structure that is finite in the x − y direction and infinite in
the xþ y and z directions. In this case, the Weyl nodes are

projected along the ~kx − ~ky direction, indicated by black
and green dots in Fig. 4(f), with good quantum numbers
~k∥ ¼ ð~kx þ ~kyÞ=

ffiffiffi

2
p

and ~kz. Figures 4(c) and 4(d) show

the projected band structures with fixed ~k∥ ¼ π=
ffiffiffi

2
p

a

[Fig. 4(c)] and ~k∥ ¼ 0 [Fig. 4(d)], as indicated by “cut 1”

and “cut 2” in Fig. 4(f). In Fig. 4(c), two surface states
(red and green curves), corresponding to the two opposite
surfaces, locate in an incomplete band gap, and both
acquire positive group velocity. In Fig. 4(d), no surface
states show up. As presented in Fig. 4(e), the upper (lower)
acoustic field corresponds to the surface state of the green
(red) curve in Fig. 4(c). We also plot the sound intensity
I ¼ pv (p is the sound pressure and v is the velocity) as
gray arrows, whose length represents the amplitude of the
sound intensity. Both surface states propagate along the z
direction, which is consistent with the positive group
velocity in Fig. 4(c).
Note that the positive group velocity of the surface states

is determined by the tilting direction of type-II Weyl nodes.
In contrast, in the previously demonstrated topological
surface states [8] of an acoustic type-I system, their
propagation direction is surface dependent: If the surface
states on one surface propagate in one direction, those on
the opposite surface should propagate in the opposite
direction. This distinction is schematically illustrated in
Fig. S1 [24]. Another distinction is that the surface states of
type-II Weyl nodes stay in an incomplete band gap. With a
single-frequency excitation (simulated results in Fig. S2
[24]), the surface states will be scattered by defects and
penetrate into the bulk. Therefore, they do not have the
same robustness as demonstrated in Ref. [8], but the
existence of “Fermi arcs” connecting Weyl nodes is still
topologically protected.
To demonstrate the acoustic Fermi arcs, we trace out the

trajectories of surface states at frequency 0.26 × 2πc=a
(fixed frequency plays the role of Fermi energy) in the 2D

BZ ð~k==; ~kzÞ, as indicated by red dotted points in Fig. 4(f).
Here we consider a semi-infinite system. and thus only the
surface states localized at one surface [red curve in
Fig. 4(c)] are included. These trajectories indeed connect
two pairs of type-II Weyl nodes, as an analog of Fermi arcs
in type-II Weyl semimetals [9–13].

FIG. 4. Chirality and Fermi-arc-like
surfaces states. (a) Type-II Weyl nodes
in the 3D first BZ. (b) The Berry phase
and Berry curvature around the Weyl
point. (c),(d) The band structures with
~k∥ ¼ π=

ffiffiffi

2
p

a (c) and ~k∥ ¼ 0 (d). The red
and green curves indicate the surface
states. (e) The acoustic fields of the sur-
face states in (c). The gray arrows re-
present the sound intensity. (f) Red dotted
points indicate the trajectories of the
Fermi arc.
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The above results demonstrate the feasibility of construct-
ing acoustic type-II Weyl nodes by stacking 1D dimerized
chains of acoustic resonators. The unique features of an
acoustic type-II Weyl system, such as the finite DOS and
transport properties of surface states, are demonstrated. The
Fermi-arc-like surface states can be traced out as an analog
of Fermi arcs in recently demonstrated type-II Weyl semi-
metals. The stacking method shown in this work provides
an approach of constructing topological phases at different
dimensions with the same building blocks and may be
extended to other systems including cold atoms [20,28],
photonics [29–34], and polaritons [35–37].
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