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Spectra of sparse non-Hermitian random matrices determine the dynamics of complex processes on
graphs. Eigenvalue outliers in the spectrum are of particular interest, since they determine the stationary
state and the stability of dynamical processes. We present a general and exact theory for the eigenvalue
outliers of random matrices with a local tree structure. For adjacency and Laplacian matrices of oriented
random graphs, we derive analytical expressions for the eigenvalue outliers, the first moments of the
distribution of eigenvector elements associated with an outlier, the support of the spectral density, and the
spectral gap. We show that these spectral observables obey universal expressions, which hold for a broad
class of oriented random matrices.
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Introduction.—Directed graphs represent graphically
the causal relations between a discrete number of degrees
of freedom of a dynamical system. Neural networks,
transportation networks, and the Internet are examples of
systems modeled by directed graphs. The dynamics of
processes governed through directed graphs can be mod-
eled with sparse non-Hermitian matrices, for example,
Markov matrices define the dynamics of stochastic proc-
esses [1,2], and Jacobian matrices determine the stability of
dynamical systems [3].
The dynamics of complex systems can be studied from

the spectra of sparse non-Hermitian random matrices,
even when the interactions between the relevant degrees
of freedom are not known. Sparse non-Hermitian random
matrices generalize random-matrix ensembles with inde-
pendent and identically distributed matrix elements [4–12].
A general theory has been developed for the spectral
density of sparse and non-Hermitian random matrices
[13–20], but other spectral properties of these ensembles
are still poorly understood.
Of particular importance are eigenvalue outliers, which

are isolated eigenvalues located outside the continuous
(bulk) part of the spectrum [see Fig. 1(a)]. Eigenvalue
outliers of sparse non-Hermitian random-matrix ensembles,
and their associated eigenvectors, are important for studies
on the dynamics of complex systems, and for the evaluation
of ranking and inference algorithms on graphs. The
stationary state of a stochastic process is given by the left
eigenvector associated with an outlier of a Markov matrix,
the relaxation time is the inverse of the corresponding
spectral gap [2,21], and the large-deviation function of an
observable is given by an outlier of a modified Markov
matrix [22–26]. Complex dynamical systems, such as
neural networks [27–30] or ecosystems [31,32], are often
modeled in terms of differential equations coupled through

random matrices. The eigenvalue with the largest real part,
which is often an outlier, determines the local stability of
these systems [33,34]. The PageRank algorithm of Google
Search uses the eigenvector associated with the outlier of
a Markov matrix to rank pages of the World Wide Web
[35,36]. Spectral algorithms detect communities in sparse
graphs based on the eigenvectors of outliers in the spectrum
of the non-backtracking matrix [18,37,38]. If these outliers
exist, then it is possible to detect the communities of the
graph. Conversely, if these outliers do not exist, then it is
impossible for an algorithm to detect the communities.
Quite apart from these applications, the study of outliers of
random matrices is also a topic of interest in mathematics
[39–41].
In this Letter we present a general theory for the

outliers of matrices with a local tree structure. We present
a set of exact relations for outliers of sparse non-Hermitian
random matrices, and for the left- and right-eigenvector
elements associated with an outlier. For oriented random
matrices or oriented random graphs, i.e., directed graphs
that have no bidirected links, we present explicit expres-
sions for the eigenvalue outliers, the spectral gap, and
the first two moments of the distribution of eigenvector
elements associated with an outlier. Interestingly, we show
that the eigenvalue outliers of oriented random matrices
and their associated eigenvector moments obey universal
expressions.
Outliers of non-Hermitian matrices.—We consider an

n × n random matrix An with probability density pðAnÞ.
The matrix An has n complex-valued eigenvalues λ1;…; λn,
and its empirical spectral distribution is [42]:

μAn
¼ 1

n

Xn
j¼1

δλj ; ð1Þ
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with δλj the Dirac measure, i.e., δλjðSÞ ¼ 0 if λj ∉ S and
δλjðSÞ ¼ 1 if λj ∈ S, with S a Lebesgue-measurable subset
of C. We assume that the matrix ensembles considered here
are self-averaging, i.e., μAn

→ μ for n → ∞, with μ a
deterministic measure. The Lebesgue decomposition theo-
rem [43] states that μ consists of an absolute continuous
part μac, a singular continuous part μsing, and a pure point
part μpp. The spectral density ρðλÞ, also called the density of
states, is the probability density function of μac [44]. Its
support is the set Ω of all values λ ∈ C for which ρðλÞ > 0,
and ∂Ω is the boundary of Ω. The measure μpp is discrete;
i.e., μpp ¼ n−1

P
α∈Laαδλα , with L a countable set, and aα

the algebraic multiplicities of the eigenvalues λα. The
outliers of a random matrix are the eigenvalues λα that
lie outside the support Ω of the spectral density (λα ∉ Ω).
We consider here isolated outliers λisol, which are non-
degenerate. In Fig. 1(a) we show the eigenvalues of a single

instance of a random matrix; the outlier λisol and the
boundary ∂Ω are indicated.
Sparse matrices.—We consider a sparse random and

non-Hermitian matrix An. The matrix elements of An are
½An�jk ¼ CjkJjk, with Cjk the elements of the adjacency
matrix of a random and directed graph [45], and Jjk
complex-valued weights that determine the dynamics of
a process on a graph. A connectivity element Cjk is either 0
or 1; if there is a directed link from vertex j to vertex k,
then Cjk ¼ 1, whereas if there is no link between the two
vertices, then Cjk ¼ 0. We set the diagonal elements Cii to
one. We consider graph ensembles of finite connectivity, in
other words, the outdegrees Kout

j ¼ P
n
k¼1ðk≠jÞ Cjk, and the

indegrees Kin
j ¼ P

n
k¼1ðk≠jÞ Ckj, are finite and independent

of n. Additionally, we consider that the random graph with
adjacency matrix Cjk is locally treelike [46], which means
that a typical neighborhood of a vertex has no cycles of
degree three or higher [47]. The ensemble of regular
directed graphs [15,17] and the directed Erdös-Rényi (or
Poisson) ensemble [14] are examples of ensembles that are
locally treelike in the infinite-size limit n → ∞.
General theory.—We present a theory for the outliers

λisol of locally treelike random matrices An, and their
corresponding left and right eigenvectors, which we denote
by hlisolj and jrisoli, respectively. We first write the right and
left eigenvectors of a given outlier λisol in terms of the
resolvent Gn of a matrix An. We define the resolvent GnðλÞ
of the matrix An as

GnðλÞ≡ ðAn − λ1nÞ−1; ð2Þ

with λ ∈ C. The resolvent Gn is singular at the eigenvalues
λ ¼ λj of An. Indeed, when we apply the eigen-
decomposition theorem to Gn, we find

Gn ¼
jrisolihlisolj
λisol − λ

þ
Xn
j¼2

jvðrÞj ihvðlÞj j
λj − λ

; ð3Þ

with jvðrÞj i and hvðlÞj j, respectively, the right and left
eigenvectors associated with λj. If we set λ ¼ λisol − iη,
with η a small real-valued regularizer, then we have

lim
η→0

iηGnðλisol − iηÞ ¼ jrisolihlisolj þOðηÞ: ð4Þ

Since λisol is an outlier, the relation (4) holds, and is well
defined for n → ∞.
We compute the elements of the resolvent Gnðλ − iηÞ

using the local tree structure of sparse ensembles in the
infinite-size limit. The outcome of our procedure is a
set of recursive equations for the eigenvector elements
rj ¼ hjjrisoli and lj ¼ hjjlisoli (see Supplemental Material
[48]):

(a) (b)

(c) (d)

FIG. 1. The outlier λisol, the spectral gap γ and the first moment
hri of the eigenvector, associated with λisol, of oriented adjacency
matrices. Direct-diagonalization results of matrices of finite
size n ¼ 1000 (markers) are compared with our theory for
infinite-sized matrices, given by Eqs. (14)–(17) (solid lines).
(a) Eigenvalues of one c-regular matrix with Gaussian distributed
off-diagonal elements, mean degree c ¼ 3 and y ¼ 0.5, with
y ¼ hJ2iJ=ðchJi2JÞ the disorder parameter. The boundary ∂Ω of
the support of the spectral density, the spectral gap γ, and the
outlier λisol are indicated. (b)–(d) The eigenvalue λ1 with the
largest real part, the spectral gap γ, and the first moment hri of
the right eigenvector associated with λ1, all plotted as a function
of y. The eigenvalue λ1 is an outlier, i.e., λ1 ¼ λisol, for y < 1,
and λ1 ∈ ∂Ω for y > 1. Results shown are for four different
ensembles of oriented matrices. The ensembles are either
c-regular or Poissonian with mean connectivity c; nonzero off-
diagonal elements are i.i.d. with either a bimodal distribution
pJðJÞ ¼ ð1 − ΔÞδðJ þ 1Þ þ ΔδðJ − 1Þ, or a Gaussian distribu-
tion with mean hJiJ ¼ 1; diagonal matrix elements are set to zero.
Direct-diagonalization results in subfigures (b)–(d) are from 1000
samples. Error bars represent the standard deviation of the
sampled population and α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðKoutÞ2iKout − c

p
=c.
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rj ¼ −gj
X
k∈∂j

Ajkr
ðjÞ
k ; ð5Þ

l�j ¼ −gj
X
k∈∂j

ðlðjÞk Þ�Akj; ð6Þ

with the “neighborhood” ∂j the set of vertices kð≠ jÞ
for which either Ckj ≠ 0 or Cjk ≠ 0. The variables gj
are the diagonal elements of the resolvent Gn, i.e.,
gj ¼ ½Gnðλ − iηÞ�jj. They solve the equations

gj ¼
1

−λþ iηþ Ajj −
P

k∈∂jAjkg
ðjÞ
k Akj

; ð7Þ

gðlÞj ¼ 1

−λþ iηþ Ajj −
P

k∈∂jnflgAjkg
ðjÞ
k Akj

; ð8Þ

for λ ∉ Ω. The random variables rðlÞj and lðlÞj in Eqs. (5)
and (6) solve

rðlÞj ¼ −gðlÞj

X
k∈∂jnflg

Ajkr
ðjÞ
k ; ð9Þ

ðlðlÞj Þ� ¼ −gðlÞj

X
k∈∂jnflg

ðlðjÞk Þ�Akj; ð10Þ

with l ∈ ∂j, and where the limit η → 0 is implicit. An
outlier λisol is given by a value λ for which the Eqs. (5)–(10)
admit a nontrivial solution, i.e., a solution for which all
eigenvector components rj and l�j are neither zero-valued
nor infinitely large. The Eqs. (5)–(10) apply to outliers of
non-Hermitian matrices with a local tree structure; they
extend the equations for the largest eigenvalue of sparse
symmetric matrices in Refs. [56–59].
Oriented matrices.—We illustrate our theory on oriented

random-matrix ensembles. Oriented matrices contain only
directed links, i.e., CjkCkj ¼ 0 for all j ≠ k. For oriented
matrices the resolvent Eqs. (7) and (8) simplify and admit
the solution

gj ¼ gðlÞj ¼ ð−λþ AjjÞ−1: ð11Þ

The eigenvector components are then given by

rj ¼ rðlÞj ; for all; l ∈ ∂ in
j ; ð12Þ

lj ¼ lðlÞj ; for all; l ∈ ∂out
j ; ð13Þ

where the random variables rðlÞj and lðlÞj represent a
nontrivial solution to the Eqs. (9) and (10). The
“in-neighborhood” ∂ in

j is the set of vertices kð≠ jÞ with

Ckj ≠ 0, and the “out-neighbourhood” ∂out
j is the set of

vertices kð≠ jÞ with Cjk ≠ 0.
We derive explicit analytical and numerical results

by ensemble averaging the Eqs. (12) and (13). An outlier
λisol, and its associated eigenvector moments hrmi ¼
n−1hPn

j¼1 r
m
j i and hlmi ¼ n−1hPn

j¼1 l
m
j i, with m ¼ 1, 2,

follow from a nontrivial solution to the ensemble-averaged
equations; the symbol h…i denotes here the ensemble
average with respect to the distribution pðAnÞ.
Additionally, we can compute the associated ensemble-
averaged distribution of eigenvector elements using the
population dynamics algorithm [48,60–63]. We illustrate
this ensemble-averaging procedure on two paradigmatic
examples of sparse matrix ensembles: adjacency matrices
and Laplacian matrices of oriented random graphs.
Adjacency matrices.—We consider random adjacency

matrices associated with random oriented graphs with
a given joint distribution pKin;Kout of in- and outdegrees
[45,64,65]. The off-diagonal weights Jkj, with k ≠ j, are
independent and identically distributed (i.i.d.) with distri-
bution pJ, and the diagonal weights Jjj are i.i.d. with
distribution pD.
The oriented adjacency matrices we consider here have

either exactly one outlier [see Fig. 1(a)] or do not have any
outlier. If the outlier exists, we call the random-matrix
ensemble gapped. Conversely, if the outlier does not exist,
we call the ensemble gapless. If the outlier exists, its value
λisol solves [48]

hðλisol −DÞ−1iD ¼ 1

chJiJ
; ð14Þ

with h·iD and h·iJ denoting, respectively, the average
with respect to the distributions pD and pJ. The quantity
c ¼ hKiniKin ¼ hKoutiKout is the mean degree of the graph,
where h·iKin and h·iKout denote averages with respect
to the distributions of in- and outdegrees, respectively.
Equation (14) follows from solving the ensemble-averaged
version of the Eqs. (5) and (6) for the eigenvector moments.
The first two moments of the distribution of right- and
left-eigenvector elements read [48]

hri2=hr2i ¼ Q
hðKoutÞ2iKout − c

; ð15Þ

hli2=hl2i ¼ Q
hðKinÞ2iKin − c

; ð16Þ

with Q¼hhJi2J=jλisol−Dj2i−1D −chJ2iJ=hJi2J. Additionally,
we find the support Ω of ρðλÞ from a stability analysis
around the solution (11) to the resolvent Eqs. (7) and (8);
the set Ω contains the values λ ∈ C with
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�
1

jλ −Dj2
�

−1

D
< chJ2iJ: ð17Þ

In Fig. 1 we compare the analytical expressions, given
by Eqs. (14)–(17), with direct-diagonalization results of
matrices of finite size. Results are in good correspondence
and converge to the theoretical expressions for large matrix
sizes n ≫ 1 (for which the ensembles become locally
treelike).
Equations (14)–(17) imply that outliers of oriented

adjacency matrices, and the first moments of their associated
eigenvector distributions, are universal. In order to illustrate
the universality of outliers, we plot in Fig. 1(b)–1(d), for
different matrix ensembles, the eigenvalue outlier, the
spectral gap, and the first two moments of the eigenvector
distribution, as a function of the disorder parameter
y ¼ hJ2iJ=ðchJi2JÞ. Diagonalization results for different
ensembles collapse on one universal curve given by our
analytical expressions Eqs. (14)–(17).
A characteristic feature of Fig. 1 is the phase transition

from a gapless phase at high disorder, y > 1, to a gapped
phase at low disorder, y < 1. Notice that this phase
transition is generic and it also appears in symmetric
random matrix ensembles [56–59,66,67].
For large mean connectivities, c ≫ 1, the distributions of

right- and left-eigenvector elements associated with λisol
become universal, and from Eqs. (5) and (6), it follows that
they are Gaussian. In Fig. 2(b) we illustrate the universal
behavior of eigenvector distributions at high connectivities.
At low connectivities these distributions are not universal,
but direct-diagonalization results are in good correspon-
dence with numerical solutions of Eqs. (5) and (6) using the
population dynamics algorithm [see Fig. 2(a)].
Laplacian matrices.—Laplacian matrices generate the

dynamics of random walks on graphs. The defining feature

of Laplacian matrices is the constraint Jjj ¼
−
P

n
k¼1;ðk≠jÞ Jjk on their diagonal elements. Symmetric

Laplacian matrices have been studied in [68,69]. Here we
study the spectra of unnormalized Laplacian matrices of
oriented graphs with off-diagonal matrix elements Jjk ¼ 1

andwith a given joint degree distributionpKin;Kout [45,64,65].
Laplacian matrices have an eigenvalue outlier λisol ¼ 0,

and the associated distribution of right-eigenvector ele-
ments reads pRðrÞ ¼ δðr − 1Þ. The associated distribution
of left-eigenvector elements pLðlÞ determines the steady-
state statistics of the position of a random walk on the
associated graph. From Eqs. (6) we find for the moments
of the distribution of left-eigenvector elements (see
Supplemental Material [48]):

hl2i
hli2 ¼

hhKini2−c
hKouti2 iKin;Kout

h c
Kouti2Kout − h c

hKouti2iKout

: ð18Þ

We furthermore find that the support Ω of the spectral
density is the set of values λ ∈ C for which either

�
Kout

jλþKoutj2
�

Kout
>1; or

�
Kin

jλþKoutj2
�

Kin;Kout
>1: ð19Þ

In Fig. 3(a) we compare the Eqs. (19) for Ω with direct-
diagonalization results of Laplacian matrices of finite size.
Additionally, in Figs. 3(b) and 3(c) we compare direct-
diagonalization results for the spectral gap γ and the ratio of

(a) (b)

FIG. 2. Probability distribution pR of the right eigenvector
elements associated with the outlier of oriented adjacency
matrices. The ensembles are the same as in Fig. 1 with disorder
parameter y ¼ 0.4, and mean connectivity (a) c ¼ 3 or
(b) c ¼ 10. We compare direct-diagonalization results (markers)
with population-dynamics results [solid lines in (a)] and with the
normal distribution (dashed line). Direct-diagonalization results
are for 2eþ 4 matrix samples of size n ¼ 1000. In order to
illustrate the universality of the distributions at high connectiv-
ities, we have rescaled the distributions with their mean hri and
their standard deviation σr.

(a) (b)

(c)

FIG. 3. Results for unnormalized Laplacian matrices associated
with oriented Erdös-Rényi random graphs with off-diagonal
matrix elements Jkj ¼ 1 for k ≠ j. We consider here an ensemble
with correlated in- and outdegrees: pKin;Koutðkin; koutÞ ¼
δðkin; kÞδðkout; kÞpdegðkÞ. The degree distribution pdegðkÞ is
Poissonian, i.e., pdegðkÞ¼N e−~c ~ck=k!, if k ≥ k0, and pdegðkÞ¼0

if k<k0, withN the normalization constant. Direct-diagonalization
results (markers) are compared with analytical results (solid lines)
for k0 ¼ 2 and ~c ¼ 4. (a) Spectrum of a single matrix with
n ¼ 4000. The red line shows the boundary ∂Ω, of the support
of the spectral density, which follows from Eqs. (19). (b),(c) The
spectral gap γ and the moments hl2i=hli2 are shown to converge to
their theoretical values for n → ∞. Direct-diagonalization results
are averages over 1eþ 3 matrices (markers) and theoretical
expressions follow from Eqs. (18) and (19) (dashed lines).
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the moments hl2i=hli2 with the exact expressions (18) and
(19) for n → ∞.
Discussion.—We have presented an exact theory for the

outliers of random matrices with a local tree structure.
Remarkably, for oriented matrices, we find general ana-
lytical expressions for the outliers, the associated statistics
of eigenvector elements, and the support of the spectral
density. These results show that the statistics of outliers of
sparse oriented random matrices obey universal expres-
sions. It will be interesting to explore the implications of
these results for the dynamics of complex systems with
unidirectional interactions, which often appear in biological
systems that operate far from thermal equilibrium, for
example, neural networks [70,71] or networks of biochemi-
cal reactions [72]. Our theory, based on the Eqs. (5)–(10),
applies also to sparse nonoriented random matrices, and
we illustrate this on the elliptic regular ensemble in the
Supplemental Material [48]. Following Refs. [15,16], it is
possible to extend our approach to random matrices that
contain many short cycles. We expect that studies along
these lines will lead to a general theory for the outliers of
sparse random matrices.

I. N. thanks José Negrete Jr. for a stimulating discussion.
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