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We explicitly construct static black hole solutions to the fully nonlinear, D ¼ 4, Einstein-Maxwell–
anti-de Sitter (AdS) equations that have no continuous spatial symmetries. These black holes have a
smooth, topologically spherical horizon (section), but without isometries, and approach, asymptotically,
global AdS spacetime. They are interpreted as bound states of a horizon with the Einstein-Maxwell–AdS
solitons recently discovered, for appropriate boundary data. In sharp contrast to the uniqueness results for a
Minkowski electrovacuum, the existence of these black holes shows that single, equilibrium, black hole
solutions in an AdS electrovacuum admit an arbitrary multipole structure.
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Introduction.—In 1967, Israel established a remarkable
and influential result in black hole (BH) physics: a static,
vacuum, regular (on and outside the horizon) BH in general
relativity (GR) is spherically symmetric [1]. A corollary,
indeed an application of Birkhoff’s theorem, implies that
such spacetime is the Schwarzschild BH and, hence,
described by a unique parameter, its Arnowitt-Deser-
Misner mass. This result, in clear contrast with the status
quo in other field theories (say, electromagnetism), set the
first cornerstone for the celebrated uniqueness theorems
[2], establishing the extraordinary simplicity of BHs in
vacuum GR.
Israel’s result was swiftly generalized to an electro-

vacuum [3], establishing that a single, static, BH solution
is spherically symmetric and described by only two
parameters, its Arnowitt-Deser-Misner mass and electric
charge (excluding magnetic charges). The purpose of this
Letter is to establish that the addition of a negative
cosmological constant to the electrovacuum model, here-
after dubbed AdS electrovacuum, allows a dramatic depar-
ture from Israel’s theorem: staticity does not guarantee the
existence of any continuous spatial symmetry for physi-
cally acceptable BHs.
We establish this result by explicitly constructing the

first, fully nonlinear, codimension 3, equilibrium, single
BH solutions in GR. As examples, we exhibit a sample of
exotic BH horizon geometries, deprived of isometries,
albeit possessing discrete symmetries, illustrated by their
isometric embeddings in Euclidean 3-space.
The role of gravitating solitons.—Gravitating solitons

are stationary, everywhere regular spacetimes with local-
ized energy, i.e., particlelike solutions of GR (or extensions
thereof). Influential examples, focusing on trivial spacetime
topologies, have been found, e.g., in Einstein-complex-
Klein-Gordon theory, dubbed boson stars [4–6], or in
Einstein-Yang-Mills (EYM) theory [7]. When gravitating
solitons exist in a given model, bound states of such
solitons with an event horizon can typically be constructed
(see, e.g., Ref. [8]), leading to more complicated BHs,

often called hairy [9]. For instance, placing a horizon inside
the two above examples of gravitating solitons, leads,
respectively, to Kerr BHs with scalar hair [11,12] and
“colored” BHs [13–17].
This general principle indicates how departures from

Israel’s theorem can be constructed, using the fact that
solitonic objects allow, typically, fewer symmetries.
Indeed, explicit static gravitating solitons and BHs with
only axial symmetry were constructed, e.g., in Refs. [18,19]
within EYM theory. But something even more dramatic
should be possible. A number of (nonlinear) field theories
possess, on aMinkowski background, known static solitonic
solutions without any continuous (spatial) symmetries
(e.g., Refs. [20–23]), which must gravitate when coupled
to GR. The addition of a horizon, therefore, will likely yield
static BHs without any continuous (spatial) symmetries.
Up to now, however, this maximal departure from Israel’s
theorem found no explicitly constructed realization; see
Refs. [24,25] for partial results in this direction.
Recently, a new candidate model for this construction

was unveiled: AdS electrovacuum. Classical results in
GR established the inexistence of gravitating solitons
in vacuum [26,27], electrovacuum [28], or AdS vacuum
[29]. Remarkably, in AdS electrovacuum, and despite
apparent obstructions [30], such solitons exist naturally.
They were anticipated and constructed linearly in
Ref. [31] by simple considerations of electrostatics in
global AdS; fully noninearly examples were presented
in Refs. [32] and [33]. In a nutshell, we note the following.
(i) The boxlike structure of AdS allows the existence of
electric (or magnetic) multipoles, as test fields, which are
everywhere regular. They are defined by their multipole
structure at the AdS boundary. (ii) Their backreaction
yields Einstein-Maxwell–AdS solitons, which inherit the
spatial symmetries of the boundary data. (iii) Introducing
a horizon yields a static BH without continuous spatial
symmetries, for appropriate boundary multipoles. A
static, axially symmetric BH within a dipole soliton
was constructed in Ref. [32]. Here, we construct static
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BHs without any spatial isometry, which, as we shall see,
require solitons with higher multipoles.
Smooth electric multipoles on AdS electrovacuum.—

Einstein-Maxwell theory with a negative cosmological
constant is described by the action

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p fR − 2Λ − FμνFμνg: ð1Þ

F ¼ dA is the Uð1Þ field strength and Λ≡ −3=L2 < 0 is
the cosmological constant, where L is the AdS “radius.”
Varying the action, one obtains the Einstein-Maxwell
equations, Gμν þ Λgμν ¼ 2Tμν, d⋆F ¼ 0, where the
electromagnetic energy-momentum tensor is Tμν ¼
FμαFνβgαβ − gμνF2=4. The maximally symmetric solution
of this theory is AdS, with F ¼ 0, which in global
coordinates reads

ds2 ¼ −NðrÞdt2 þ dr2

NðrÞ þ r2ðdθ2 þ sin2θdφ2Þ; ð2Þ

where NðrÞ ¼ 1þ r2=L2. AdS electrostatics in global
coordinates, for test fields, exhibits an important difference
with respect to its Minkowski counterpart: there are
everywhere regular solutions for all multipoles (except
the monopole), which decay as 1=r, asymptotically [31].
A similar statement applies to magnetostatics [33]. In these
previous studies, only the axisymmetric multipoles were
considered. Here we consider the most general electrostatic
potential, A ¼ Vðr; θ;φÞdt, with

Vðr; θ;ϕÞ ¼
X
l≥1

Xm¼l

m¼−l
clmRlðrÞYlmðθ;φÞ; ð3Þ

where clm are arbitrary constants and Ylmðθ;φÞ are the
real spherical harmonics [34], normalized such thatR
dΩYlmYl0m0 ¼ δll0δmm0 . Because of the AdS background

symmetries, the radial equation is m independent, ðd=drÞ
fr2½dRlðrÞ=dr�g ¼ ½1=NðrÞ�lðlþ 1ÞRlðrÞ. For l ≥ 1
this equation possesses a solution which is regular every-
where (in particular at r ¼ 0), which can be written in terms
of hypergeometric functions [31]:

RlðrÞ ¼
Γð1þl

2
ÞΓð3þl

2
Þffiffiffi

π
p

Γð3
2
þ lÞ

rl

Ll 2F1

�
1þ l
2

;
l
2
;
3

2
þ l;−

r2

L2

�
;

where the normalization guarantees that RlðrÞ → 1
asymptotically.
The energy density of the solutions ρ ¼ −Tt

t is finite
everywhere and strongly localized in a finite region of
space, depending on both θ and φ. ρ is nonzero at θ ¼ 0;
at r ¼ 0 it vanishes unless l ¼ 1. At infinity, ρ decays
as 1=r4, such that the total energy of these solutions, E ¼
−
R ffiffiffiffiffiffi−gp

Tt
td3x, is finite. With the chosen normalization

El ¼ LΓð1þ l=1þ lÞΓð3þ l=2Þ=fΓ½1þ ðl=2Þ�Γðl=2Þg
[35].

These static regular electric multipoles on a fixed AdS
background satisfy the virial identity

Z
∞

0

r2dr
Z

π

0

sin θ

�
V2
;r þ

1 − r2

L2

N2ðrÞr2
�
V2
;θ þ

V2
;φ

sin2θ

��
¼ 0:

In the L → ∞ limit (Minkowski), all terms in the integrand
are positive definite and no nontrivial configurations can
exist. This identity clarifies that (i) the AdS geometry
supplies the attractive force needed to balance the repulsive
gauge interactions, and (ii) the configurations are supported
by the nontrivial angular dependence of V; i.e., they must
possess a multipolar structure.
In Fig. 1 we exhibit surfaces of constant energy density

for a sample of these solutions, with l ¼ 1, 2, 3, 4 and
m ≥ 0 (the case m < 0 follows directly). For m ≠ 0, these
surfaces possess solely discrete symmetries. The exception
to this pattern occurs for l ¼ 1, wherein the m ¼ 1 and
m ¼ 0multipoles are related by a rotation (as indeed are the
l ¼ 2, m ¼ 1, and m ¼ 2 multipoles). Thus, obtaining
static BHs with no spatial isometries requires taking l ≥ 2.
Similar solutions to the ones just described are found

when taking instead a Schwarzschild-AdS (SAdS) BH
backgound, with a line element still given by Eq. (2),
where now NðrÞ ¼ ð1 − rH=rÞ½1þ ðr2 þ rrH þ r2HÞ=L2�,
and rH > 0 is the event horizon radius. The corresponding
radial equation cannot, however, be solved in closed form

FIG. 1. Examples of surfaces of constant energy density for the
Maxwell–AdS regular electric multipoles with (from left to right)
ðl; mÞ ¼ fð1; 0Þ; ð1; 1Þg (top row); ðl; mÞ ¼ fð2; 0Þ; ð2; 1Þ;
ð2; 2Þg (second row); ðl; mÞ ¼ fð3; 0Þ; ð3; 1Þ; ð3; 2Þ; ð3; 3Þg
(third row); ðl; mÞ ¼ fð4; 0Þ; ð4; 1Þ; ð4; 2Þ; ð4; 3Þ; ð4; 4Þg (fourth
row). Here we are defining standard Cartesian coordinates from
the global AdS coordinates, using the standard formulas. All plots
in this work use units with L ¼ G ¼ 1.
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any longer (except for l ¼ 0). But it is straightforward to
obtain a numerical solution, for any l ≥ 1 [36]. The radial
function vanishes on the horizon, in the neighborhood of
which it can be written as a power series in ðr − rHÞ.
Solutions are regular everywhere, on and outside the
horizon, showing that these regular electric multipoles
can be superimposed on the SAdS BH.
The nonlinear setup.—Fully nonlinear AdS-electrovac-

uum solitons and BHs are obtained from the backreaction
of the above solutions. We shall tackle the fully nonlinear
Einstein-Maxwell–AdS equations numerically, employing
the Einstein–De Turck (EDT) method [37,38]. This
approach to the numerical treatment of stationary problems
in GR does not require fixing, a priori, a metric gauge,
yielding, nevertheless, elliptic equations (see, e.g.,
Refs. [39,40] for reviews). The EDT equations are

Rμν −∇ðμξνÞ ¼ Λgμν þ 2

�
Tμν −

1

2
Tgμν

�
: ð4Þ

Here, ξμ is a vector defined as ξμ ≡ gνρðΓμ
νρ − Γμ

νρÞ, where
Γμ
νρ (Γμ

νρ) is the Levi-Civita connection associated to the
spacetime metric g that one wants to determine (a reference
metric g that is introduced). Solutions to Eq. (4) solve the
Einstein equations if and only if ξμ ≡ 0 everywhere on the
manifold.
To solve Eq. (4), together with the Maxwell equations,

we use an ansatz with seven unknown metric functions, F1,
F2, F3, F0, S1, S2, S3 and an electrostatic potential V:

ds2 ¼ F1ðr; θ;φÞ
dr2

NðrÞ þ F2ðr; θ;φÞ½rdθ þ S1ðr; θ;φÞdr�2

þ F3ðr; θ;φÞ½r sin θdφþ S2ðr; θ;φÞdr
þ S3ðr; θ;φÞrdθ�2 − F0ðr; θ;φÞNðrÞdt2; and

A ¼ Vðr; θ;φÞdt; ð5Þ

where NðrÞ¼ ½1− ðrH=rÞ�½1þðr2þ rrHþ r2H=L
2Þ− ðq2=

rrHÞ� is a background function, with rH > 0 the event
horizon radius and q another input constant. Then the
problem reduces to solving a set of eight PDEs with
suitable boundary conditions (BCs). The BCs are found
by constructing an approximate form of the solutions on the
boundary of the domain of integration, compatible with the
requirement ξμ ¼ 0, plus regularity and AdS asymptotics.
In particular, the first requirement should imply ξμ ≡ 0
everywhere, a condition which is verified from the numeri-
cal output.
We have focused our study on m > 0 solutions with a

reflection symmetry along the equatorial plane (θ ¼ π=2)
and two Z2 symmetries with respect to the φ coordinate.
The domain of integration for the (θ, φ) coordinates is then
½0; π=2� × ½0; π=2�. Explicitly, we impose the following
BCs at infinity (see also [41]) F0 ¼ F1 ¼ F2 ¼ F3 ¼ 1,
S1 ¼ S2 ¼ S3 ¼ 0, V ¼ ceYlmðθ;φÞ, which defines the

Maxwell boundary data to be a single harmonic (l, m) with
strength ce. The BCs at θ ¼ 0 are ∂θF0 ¼ ∂θF1 ¼∂θF2 ¼ ∂θF3 ¼ 0, S1 ¼ S2 ¼ ∂θS3 ¼ 0, V ¼ 0. At θ ¼
π=2 we impose ∂θF0 ¼ ∂θF1 ¼ ∂θF2 ¼ ∂θF3 ¼ 0,
S1 ¼ ∂θS2 ¼ S3 ¼ 0, together with V ¼ 0, except if
lþm is an even number, in which case we impose
∂θV ¼ 0. The BCs at φ ¼ 0 are ∂φF1 ¼ ∂φF2 ¼ ∂φF3 ¼
∂φF0 ¼ 0, ∂φS1 ¼ S2 ¼ S3 ¼ 0, ∂φV ¼ 0. At φ ¼ π=2 we
impose ∂φF1 ¼ ∂φF2 ¼ ∂φF3 ¼ ∂φF0 ¼ 0, ∂φS1 ¼ S2 ¼
S3 ¼ 0 together with V ¼ 0 for oddm, or ∂φV ¼ 0 for even
m. Solitonic solutions have rH ¼ 0 ¼ q and the range of the
radial coordinate is 0 ≤ r < ∞. At r ¼ 0 we impose
∂rF1 ¼ ∂rF2 ¼ ∂rF3 ¼ ∂rF0 ¼ ∂rS1 ¼ ∂rS2 ¼ ∂rS3 ¼ 0,
V ¼ 0. The BHs have a horizon located at r ¼ rH > 0. To
deal with the BCs there, it proves useful to introduce a new
(compact) radial coordinate x, as r≡ ½rH=1 − ðx=2LÞ2�,
such that 0 ≤ x < 2L and in terms of which the horizon is
located at x ¼ 0. This yields the following BCs at
the horizon: ∂xF1 ¼ ∂xF2 ¼ ∂xF3 ¼ ∂xF0 ¼ 0, S1 ¼ S2 ¼∂xS3 ¼ 0, V ¼ 0.
Numerical procedure.—We have successfully obtained

numerical solutions for both BHs and solitons in AdS
electrovacuum, fixing the gauge field boundary data to be a
single Ylm harmonic, and scanning through a variety of l,
m values. The numerical procedure we have used is a
modified version of the approach previously employed in
the study of axially symmetric configurations of the same
model [33]. The field equations are first discretized on a
(r, θ, φ) grid with Nr × Nθ × Nφ points. The grid spacing
in the r direction is nonuniform, while the values of the grid
points in the angular directions are uniform. Typical grids
have sizes ∼100 × 30 × 30. The resulting system is solved
iteratively until convergence is achieved. Computations are
performed by adapting a finite difference code described in
Ref. [42] based on the iterative Newton-Raphson method.
For the solutions herein, the typical numerical error is
estimated to be ≲10−3.
In practice, the BH solutions are found starting with

SAdS BHs and slowly increasing the parameter ce in the
BCs at infinity. In a second step, the parameters (rH, q) in
Eq. (5) are also varied.
Horizon geometry.—The most unusual property of

the generic BH solutions is that their horizons do not
possess a rotational symmetry, despite being topologically
a 2-sphere. To establish this result, we consider the induced
metric at the horizon, which reads, from Eq. (5),

dσ2 ¼ r2H½F2dθ2 þ F3ðsin θdφþ S3dθÞ2�; ð6Þ

where F2, F3, S3 are now only functions of θ, φ. To
visualize this geometry, we consider its isometric embed-
ding in a flat three-dimensional space, with dσ2 ¼
dX2 þ dY2 þ dZ2, the embedding functions, Xðθ;φÞ,
Yðθ;φÞ, Zðθ;φÞ, being found by integrating a system of
nonlinear PDEs. In Fig. 2 we exhibit 3D isometric
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embeddings for a set of nonaxisymmetric BHs. For
instance, for ðl; mÞ ¼ ð3; 2Þ boundary data, one obtains
a cubiclike horizon. Comparing with Fig. 1 one observes
that the horizon loosely adapts to the corresponding
constant energy surface, except that it is topologically
simply connected. Also, the horizon scalar curvature is
everywhere finite, although it can take large values [43].
As shown in Fig. 3, the horizon deformation increases with
ce; these global isometric embeddings, however, can only
be obtained up to some threshold value of ce, beyond which
well-known obstructions arise (see, e.g., Refs. [44,45]).
Global charges and thermodynamics.—These configu-

rations carry a nonzero electric charge density; their total
electric charge, however, vanishes. As such, the only global
charge of the solutions is their mass M. Its expression,
computed by employing either the prescriptions in
Ref. [46] or the one in Ref. [47], is

M ¼ MðbÞ −
3L

16πG

Z
2π

0

dφ
Z

π

0

dθ sin θf03ðθ;φÞ;

where MðbÞ ¼ ðrH=2GÞ½1þ ðr2H=L2Þ þ ðq2=r2HÞ� is a
contribution from the background metric and f03ðθ;φÞ is
a function which enters the far field asymptotics, with
F0 ¼ 1þ f03=r3 þ � � �. In Fig. 4 we exhibit the total mass
for BH solutions with different (l, m) values of boundary
data, for a fixed temperature and varying ce. The pattern is
universal: the mass increases with ce and also (for the same
m) with the multipole number l.
Of interest are also the horizon area and Hawking

temperature of the BHs,

AH ¼
Z

2π

0

dφ
Z

π

0

dθ
ffiffiffiffiffi
gσ

p
; TH ¼ ð1þ 3r2H=L

2 − q2Þ
4πrH

;

where
ffiffiffiffiffi
gσ

p ¼ r2H sin θ
ffiffiffiffiffiffiffiffiffiffiffi
F2F3

p
. In the absence of a net

electric charge, the thermodynamics has similarities to that
of SAdS BHs. As shown in Fig. 4 (inset), there are two
branches of BHs, existing above a minimal temperature

TðminÞ
H > 0, where TðminÞ

H decreases with ce. For lower
branch solutions, the BH size decreases with TH, while
for upper branch BHs, the horizon area increases with the
temperature, with no upper bound on AH.
These BH solutions possess a nontrivial zero horizon

size limit rH → 0, corresponding to AdS-electrovacuum
solitons with no isometries. The (M, ce) diagram of the
solitons is similar to that exhibited for BHs in Fig. 4.
Finally, let us mention two generalizations. (i) These

BHs can be endowed with a net electric charge by turning
on an additional l ¼ 0mode, in the boundary condition for
V at infinity. Such solutions, however, do not possess a
solitonic limit and can be thought of as describing the
(nonlinear) superposition of a Reissner-Nordström (rather
than Schwarzschild) BH with AdS-electrovacuum solitons.
(ii) The configurations described herein will possess a
magnetic dualized version, which can be straighforwardly
constructed.

FIG. 2. Examples of isometric embeddings for the horizon of
AdS-electrovacuum BHs (top), together with their horizon Ricci
scalar (bottom). The boundary data are given by the harmonics
with (l,m) equal to (2, 2) (left), (3, 2) (middle), and (3, 3) (right).

l=2 m=2 l=3 m=3
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FIG. 3. Equatorial slices for isometric embeddings of the
horizons of AdS-electrovacuum BHs with different boundary
data. The BHs have the same temperature and increasing values
of the parameter ce, starting with ce ¼ 0 (center).
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FIG. 4. Mass vs ce for families of BHs with different boundary
data and the same temperature. (Inset) Horizon area vs temper-
ature for (3, 1) BHs with different values of ce.
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Remarks.—Static (single) BHs in electrovacuum can
only have an electric monopole, and they are necessarily
spherically symmetric. In sharp contrast, static BHs in AdS
electrovacuum can have an arbitrary electric multipole
structure; by turning on appropriate multipoles, we have
presented explicit examples of static BHs with no con-
tinuous (spatial) symmetries.
The BHs presented here still exhibit discrete symmetries.

Is it possible, with appropriate boundary data, to obtain BH
horizons, in AdS electrovacuum, isometric to any topo-
logically spherical 2-manifold? If not, what 2-geometries
are allowed? Whatever the correct answer is, the results
reported herein show (yet) another example of how con-
ceptually different AdS gravity is from its Minkowski space
counterpart.
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