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A tacit assumption underlying most phase field models of nonequilibrium phase transformations is that
of scale separation. Stochastic order parameter field theories utilize noise to separate atomic-scale
fluctuations from the slowly varying fields that describe microstructure patterns. The mesoscale
distribution of such stochastic variables is generally assumed to follow Gaussian statistics, with their
magnitude following fluctuation-dissipation relations. However, there is still much debate about how
atomic-scale fluctuations map onto the mesoscale upon coarse graining of microscopic theories. This Letter
studies interface fluctuations in the phase field crystal (PFC) model and proposes a self-consistent method
for relating how the effective noise strength and spectral filtering of the noise in the PFC model, and similar
types of microscopic models, should be defined so as to attain the spectrum of mesoscale capillary
fluctuations quantitatively.

DOI: 10.1103/PhysRevLett.117.220601

The properties of most materials are known to be
strongly correlated to the internal structure between the
nanometer to micrometer scales. For example, the strength-
ening and plastic deformation of metals is controlled by the
patterning of grain boundaries, multiphase boundaries,
dislocation density, and impurity atoms. In semiconductors,
the band structure is strongly modified by the presence of
all the aforementioned defects. The microstructure in solids
is established at the time of solidification and subsequently
modified by various thermal and mechanical processes.
All these processes are nonequilibrium phase transforma-
tions that govern the arrangement of atoms across multiple
scales. As such, the ability to control and manipulate
microstructure in order to design materials with desired
properties translates to a need for experimentally character-
izing and theoretically modeling microstructure across
many scales.
In the study of nonequilibrium phase transformations

relevant to materials, it is crucial to capture and integrate
atomic-scale features into mesoscale phase field theories,
which are well known to be thermodynamically consistent
at long length and time scales. Toward this goal, phase field
crystal (PFC) modeling [1,2] has recently emerged as an
efficient and mathematically accessible methodology that
integrates the thermodynamics of phase transformations
with many salient solid- and liquid-state properties emer-
gent at the atomic scale, including elastoplastic deforma-
tion, grain boundaries, rotational grain invariance, and
nucleation, all on diffusive time scales [3]. Extensions to
the original PFC model have been developed to model
complex structural transformations in pure materials [4–6],

multicomponent alloys [7–10], and the study of solidifi-
cation and solid-state transformations [11–13].
There has been much debate in the modeling community

about the fluctuations in the PFC model [14]. One
approach, motivated through classical density functional
theory (cDFT), argues that the density field evolved is an
ensemble averaged quantity. This description suggests that
the use of a stochastic noise term is inconsistent, as it would
lead to double counting temperature effects. On the other
hand, although the PFC order parameter is formally related
to the cDFT density, it retains only its salient features,
making PFC modeling a paradigm of its own. If one rather
interprets the PFC density as a temporally coarse-grained
quantity, one should add a stochastic term to the density
equation to account for effects faster than the coarse-
graining time scale. This addition is particularly important
to allow the system to overcome energy barriers required to
emulate nucleation in solidification or grain depinning in
solid-state transformations, to name but a few effects.
Noise in traditional phase field type models and PFC is

generally assumed to be of the Langevin type, following
fluctuation dissipation in the bulk. This makes it possible to
identify the stochastic noise amplitude when the model is
mapped to a specific material through the various expan-
sion parameters in the free energy. In its more popular form,
however, the PFCmodel is cast into reduced, dimensionless
units, a form that treats some of the expansion parameters as
variables. In this paradigm, under what conditions does the
PFC theory follow the long-wavelength behavior predicted
by statistical mechanics? Moreover, different coarse-
graining approaches used to attain the long-wavelength
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limit typically introduce approach-specific scale factors in
the free energy and the effective coarse-grained noise
variables [15–20]. As a result, it is not clear how the
application of noise at the microscopic PFC scale modulates
the model’s mesoscale predictions. A long-standing ques-
tion therefore remains to be answered: Since PFC noise
accounts for effects washed out by the temporal coarse-
graining procedure, what spatial distribution and magnitude
should it have so that PFC theory quantitatively reproduces
the long-wavelength behavior predicted by statistical
mechanics?
Another key question is that of noise filtering. While it is

clear that all continuum models require an addition of noise
to create capillary fluctuations, it is not obvious that
introducing noise at shorter length scales than the interface
width does not overcount temperature effects at the
mesoscale. Unfiltered noise induces a divergence of the
noise-induced excess potential [21], which is why several
authors have introduced a high-k noise cutoff [3,22–24].
Numerically, the grid spacing naturally sets a cutoff length
scale; however, this is much shorter than the typical scales
at play in the simulation. It has also been suggested that
the noise-induced excess potential should be on the order of
the potential barrier, which leads to a cutoff around the
interatomic length scale [21].
In this Letter, we examine interface fluctuations in the

PFC model in the context of long-wavelength capillary
fluctuation theory in order to determine a self-consistent
relationship between the microscopic PFC noise and the
emergent fluctuations at the mesoscale. The approach
described here can be applied to any type of continuum
theory. The specific application here to the PFC model
allows us to fix the stochastic PFC noise strength unam-
biguously as a function of this model’s free energy
parameters. In this example, we also demonstrate that
the cutoff in noise filtering is crucial for attaining a
quantitative match with capillary fluctuation theory. To
our knowledge, this is the first attempt to establish a method
for fixing the strength of the PFC noise to be fully self-
consistent with the correct long-wavelength behavior.
We consider the following PFC dynamical equation:

∂tnðrÞ ¼ Γ∇2
δF ½nðr; tÞ�
δnðr; tÞ þ ηðrÞ; ð1Þ

where F ¼ F=ðρ̄RdkBTÞ is the dimensionless PFC free
energy [1,3], given by

F ¼
Z

dr

�
n
2
½ΔBþ Bxð1þ∇2

rÞ2�n −
n3

6
þ n4

12

�
; ð2Þ

where nðrÞ is the microscopic PFC order parameter field, η
is a stochastic noise term, and Γ is the atomic mobility. Here
T is the temperature, kB is the Boltzmann constant, ρ̄ is a
reference density (which serves as an expansion point of

the theory), R is a characteristic length scale, and d is the
dimensionality of the system. In this model, ΔB acts as an
effective temperature, and Bx is the bulk compressibility of
the solid phase, which allows for the modeling of different
types of materials and interfaces. For a fixed value of ΔB,
large Bx values will result in metalliclike diffuse interfaces,
while smaller values of Bx yield polymerlike atomically
sharp interfaces.
Assuming completely uncorrelated events on short

length and time scales, η is assumed to follow Langevin-
type dynamics, i.e., be a Gaussian stochastic noise variable
satisfying the form

hηðr; tÞηðr0; t0Þi ¼ −N2
a∇2

cδðr − r0Þδðt − t0Þ; ð3Þ
whereN2

a is the amplitude of the noise. The index “c” in∇2
c

indicates a possible cutoff to the scale of the noise
(discussed below). For the case of ηðrÞ ¼ 0, the functional
of Eq. (2) allows for the simulation of the equilibrium
properties of interfaces, such as their surface energies
[17–20,25,26]. Such interfaces, however, do not fluctuate
and cannot be spontaneously generated from the bulk
through nucleation events. Conversely, with ηðrÞ ≠ 0,
several works have shown that noise allows for the
phenomenology of nucleation of nonequilibrium solid
precursors [22], depinning, and step growth [16].
It can be shown that bulk fluctuations establish the noise

amplitude in the form N2
a ¼ 2Γ=ρ̄Rd. In theory, matching

the model to a specific phase space of a given material
should provide the values for ρ̄, R, and Γ. For example,
taking R to be the lattice constant of the crystal would make
the product ρ̄Rd the number of atoms per unit cell.
However, here we show that, in order to recover the
long-wavelength capillary fluctuation spectrum of a
solid-liquid interface quantitatively, the product ρ̄Rd must
in fact be fixed in a way that depends on the parameters of
the free energy functional.
Statistical mechanics predicts that capillary fluctuations

of a solid-liquid interface must obey hjAj2fi ¼ 1=
Ld−1ðkBTÞ=ðγ þ γ00Þ1=K2, where A is the amplitude of
the Fourier mode with wave vector K, γ is the surface
energy, γ00 is its second derivativewith respect to orientation
(γ þ γ00 is called the surface stiffness), and Ld−1 is the
length (2D) or area (3D) of the fluctuating structure. Hoyt
and co-workers have shown [27,28] that this equation also
describes the mesoscale behavior of interfaces simulated
through molecular dynamics. Tóth, Gránásy, and Tegze
also showed that the 1=K2 form also emerges in PFC
simulations [29]. The expression for jAj2 has units ofmd−1.
Scaling to PFC units (k ¼ KR, ~L ¼ L=R) and introducing
~γ ¼ γ=ðkBTρ̄RÞ yields

hj ~Aj2i≡ hjAj2iρ̄R ¼ 1

~Ld−1
1

~γ þ ~γ00
1

k2
; ð4Þ

which is dimensionless since ½ρ̄R� ¼ 1=md−1. It is note-
worthy that the rescaled capillary fluctuation spectrum (4)
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depends only on rescaled variables of our model and can
thus be related quantitatively to results obtained directly
from PFC simulations. In what follows, we first perform
simulations of a solid-liquid interface with ηðrÞ ¼ 0 from
an amplitude formulation (so-called phase field limit) of the
PFC energy of Eq. (2) and extract the interface stiffness.
This is done by subtracting the total grand potential energy
of the system from the grand potential of the bulk based on
standard approaches [17,26]. The amplitude formulation
used here is analogous to that developed by Majaniemi and
Provatas [18,20]. Using the full atomistic PFC model, we
then perform simulations where we fluctuate the interface
with differentNa values and with different spatial cutoffs of
the noise spectrum. In each case, we compute hj ~Aj2i and
use Eq. (4) as a target theory from which to extract the
correct value of N2

a in Eq. (3).
A PFC simulation box of 1000 × 4000 grid points is

setup with a single slab of solid filling the box in the ŷ
direction and where one of the triangular basis vectors of
the solid phase is pointed along the ŷ direction. The slab
dimensions are ∼60 layers × 400 atoms. The slab is sur-
rounded by liquid and the model parameters set to be in
the middle of the coexistence region of the phase diagram.
The interface runs along the ŷ direction (see Fig. 1). The
rescaled PFC model (1) and (2) is evolved using a semi-
spectral Fourier space algorithm with a time step of 1 in
dimensionless units. The position of the interface is
detected with an atomic peak tracker, with entry into the
bulk solid being identified as soon as the peaks of nðrÞ
exceed the average value ðnsolid þ nliquidÞ=2. Here nliquid
and nsolid are the equilibrium densities of the two phases, as
measured in a noiseless environment. We first perform 106

time steps to allow the interface to reach a stationary state,
before recording its evolution for another 3 × 106 time
steps. In averaging interface configurations over time, care
is taken to account for self-correlations of the interface at
different wavelengths. This is reflected in the error bars
shown, and details are provided in Supplemental Material

[30]. To collect independent statistics, ten different runs are
performed and the power spectra averaged.
Some sample interface power spectra are presented in

Fig. 2. HereBx ¼ 0.55,ΔB ¼ 0.18, and no ¼ 0.207. Single
(black) lines show the interface spectrum, averaged over
time and ten different runs. The color regions show the
envelope of the error bars.UsingEq. (3)without filtering,we
obtain the red line in the figure. While a power law is
obtained, comparing to the expected 1=k2 spectrum (dashed
red line), we see a notable discrepancy.We suspect nonlinear
cross mode coupling is responsible for this modification.
This deviation can be corrected by removing modes with
k > kmax. If kmax ≤ kλ, with kλ the kmode corresponding to
the crystal wavelength, the spectrum changes to the correct
1=k2 scaling. This behavior is robust, since any value of
kλ=kmax we have chosen between 1 and 5 yields the same
result. A slight power loss on the order of the atomic length
scalewas seenwith kλ=kmax ¼ 10 (not shown for clarity). To
our knowledge, this is the first demonstration showing that
noise filtering is necessary to account for fluctuations in the
correct way in PFC simulations. We expect that, without
filtering, 1=k2 scaling will be achieved at very low k values;
however, these are typically beyond the range of practical
PFC simulation systems.
With a methodology for establishing a noise cutoff in

hand, we proceed to study the prefactor multiplying 1=k2 in
Eq. (4). All simulations presented here use the value
kλ=kmax ¼ 1.5. We start by examining its scaling with
the amplitude of the noise. Following Ref. [16], one can
analytically determine the interface fluctuations from the
PFC model, through the amplitude formalism and interface
projection technique. This results in the expression
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FIG. 1. Sample PFC density field of coexisting solid and liquid
phases. Bx ¼ 0.55, ΔB ¼ 0.18, and Na ¼ 0.04. The green line
joins the atomic peaks defining the detected interface. This
picture shows ∼1=3 and ∼1=6 of the simulation box in x̂ and
ŷ, respectively.
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FIG. 2. Power spectra of a fluctuating interface for different
noise cutoff wave vectors kmax (solid curves in black and red).
The error bar envelopes corresponding to the solid curves with
kλ=kmax ¼ 0, 0.5, 0.75 are highlighted in yellow, while those for
kλ=kmax ¼ 1, 1.25, 1.5, 2, and 5 are highlighted in blue. The red
dashed line shows 1=k2. For reference, k ¼ 10−2 is the wave-
length corresponding to roughly 90 atomic lengths.
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hj ~Aj2i ¼ 1

~Ld−1
N2

a

Sk2
; ð5Þ

where S=N2
a is an effective dynamical stiffness of the

model. S explicitly depends on Bx but also implicitly
depends on ΔB and Bx through integrals of the crystal
amplitude over the shape of the interface. These integrals
encapsulate the essence of the coarse-graining procedure.
Since the crystal-liquid interface changes nonlinearly,
calculating the value of S requires additional information
about the coarse-grained amplitude equations, which is
beyond the scope of this study. Here, we check if the S term
has any additional dependence on the noise amplitude Na.
This is not expected for reasonable amounts of noise, since
the noise should not change the shape of the interface, only
fluctuate it. This is confirmed in Fig. 3, which plots S−1 for
different values of Na and temperature (ΔB). Since S does
not depend on the noise amplitude, one can combine
Eqs. (4) and (5) to obtain a quantitative metric of the
PFC noise amplitude N2

a, namely,

N2
a ¼

S
ð~γ þ ~γ00Þ : ð6Þ

The amplitude Na can be found from Eq. (6) by computing
S and ð~γ þ ~γ00Þ, the latter of which we compute from ~γ for
different interface angles in a simulation without added
noise (in this process, measuring the exact value of the
lattice spacing is essential, as any excess strain needs to be
avoided). We note that the metric Na, assuming the
behavior exhibited in Fig. 3, is general and can be applied
to any microscopic PFC-type model.
Figure 4 shows the computed results of how Na depends

on the PFC parameters. The left panel shows its

dependence on the model’s effective temperature ΔB,
and the right panel shows its dependence on Bx. It is
noteworthy that, within the error bars, Na depends mono-
tonically on both ΔB and Bx.
Recalling the shape of the noise term from bulk

fluctuations, N2
a ¼ 2Γ=ρ̄Rd, and comparing this to the

result of Fig. 4 [evaluated via Eq. (6)], we conclude that
the product ρ̄Rd needs to depend on the parameters of the
PFC free energy expansion to yield quantitative mesoscale
fluctuations computed in PFC simulations. In the PFC
model, Bx controls the type of material that one models. It
is thus not surprising that one needs to constrain the product
ρ̄Rd to obtain physically meaningful results.
With ΔB playing the role of temperature in the model,

the dependency of ρ̄Rd on ΔB may seem like a surprise at
first. We note, however, that the dependency comes purely
from the rescaling of the PFC equation of motion. Should
the equation be recast into dimensional form, this depend-
ency would disappear, recovering the usual fluctuation-
dissipation relation.
This Letter is the first demonstration to show that

capturing capillary fluctuations in the PFC simulations
quantitatively requires special care to be taken in filtering
the noise spectrum and in selecting the noise amplitude in a
way that is self-consistently connected with the model
parameters of the PFC theory used. Here we computed the
self-consistent noise amplitude for the basic PFC model;
however, we expect that the approach outlined herein to
compute the scaling prefactor Na of the noise operator in
Eq. (3) is generally applicable to all continuummicroscopic
theories.
This Letter considers the PFC model with Langevin

noise as a microscopic theory in its own right and examines
its long-wavelength behavior. It is unclear if the present
model can capture short-scale nonequilibrium fluctuations
in a way that is consistent with other microscopic models,
such as the one described in Ref. [31]. An upcoming study
will examine the statistics of PFC nucleation using the
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FIG. 3. Prefactor S−1 in the interface power spectrum Eq. (5)
versus noise amplitude Na for different PFC temperature param-
eters ΔB, with Bx ¼ 0.7. The dashed lines are fits.
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FIG. 4. Computed value of the noise amplitude versus ΔB (left
panel, at Bx ¼ 0.55) and Bx (right panel, at ΔB ¼ 0.18).
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noise properties determined in this work. We note that any
type of microscopic PFC-type model could use an approach
similar to that presented here to assure agreement with
capillary fluctuation theory.
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